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N. INTRODUCTION 

I n  the  last decade, s ign i f icant  progress has been made i n  two 

apparently unrelated f ie lds  as a r e su l t  of t he  rapid development 

of e f f i c i en t  d i g i t a l  computers. 

programing and s h e l l  analysis. 

These fields are mathematical 

The problem of mathematical programing is  that of minimizing 

o r  maximizing an objective function f 

choice of t h e  vector x The problem of shell analysis is: given 

a set of equilibrium equations 

i' 

L x + N x = b  

where L is a l i n e a r  operator and N is a nonlinear operator 

and b represents the nonhomogeneous terms, f i nd  t h e  displacement 

set x which satisfies equation (1). Approximate solutions of the 

set of equation (1) have been obtained by solving a sequence of 

l inear ized s e t s  of equations 

(L + N)x = b 

where E i s  the  l i n e a r  p a r t  of t h e  ope o r  N. For a s h e l l  

having conservative in te rna l  and external forces  a po ten t i a l  

function ex i s t s ,  and the  equilibrium equation (1) follow as a 

consequence of t h e  Ttheorem of Minimum Potent ia l  through t h e  

application of the calculus of var ia t ions.  
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Approxfnzate numerical solutions of t h e  d i f f e r e n t i a l  equations 

(1) o r  (2) are obtained by replacing t h e  continuous displacement 

functions with a set of d i sc re t e  values and by replacing d i f f e r e n t i a l  

operators with f ini te-difference operators. Equation (2) then 

becomes a set of l i n e a r  algebraic equations where t h e  operator 

(L + $I i s  a square matrix of order n, where n i s  number of 

unknowns. 

be found by e f f i c i en t  matrix methods. 

solutions of equation (1) satisfy only a necessary condition f o r  

an extremum of t h e  poten t ia l  function. 

of the Ner-Lagrange equation correspond t o  a minimum of the 

potent ia l ,  it i s  necessary and suf f ic ien t  that a l l  possible v i r t u a l  

displacements from t h e  solut ion of the Ner-Lagrange equations 

lead t o  an increase i n  t h e  poten t ia l .  

The solut ion of t h e  resu l t ing  set of equations can then 

It should be noted t h a t  

Ln order t h a t  the solut ion 

A l l  of t he  numerical investigations of shell behavior which 

have been reported i n  the literature seek solutions t o  the M e r -  

Lagrange equations. This is  called the indi rec t  method of solution. 

Another method of obtaining t h e  solution i s  ca l led  the  d i r ec t  metho 

wherein the  displacement vector associated with an equilibrium 

state is  found by t h e  d i r ec t  minimization of t h e  f ini te-difference 

approxhat ion of t he  poten t ia l  function. The d i r ec t  determination 

of t h e  displacement set associated with the  minimurn of t h e  p o t e n t i d  

function i s  a problem of mathematical programing. 

noted that  the displacement s e t  which is determined by the  d i r ec t  

method satisfies both suf f ic ien t  and necessary conditions f o r  a 

minimum. 

It should be 
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The purpose of this  investigation is  t o  determine the f 

of obtaining numerical solutions f o r  nonlinear problem i n  cont i  

mechanics by minimizing a sui table  function. 

chosen f o r  t h i s  investigation is  tha t  of determining the n o d i n e  

displacements and the buckling load f o r  an axisymmetrically loaded 

shallow s h e l l  of revolution having a rb i t r a ry  edge r e s t r a in t s  (li 

springs).  "his problem was chosen because a s ignif icant  l i tera- t  

ex is t s  for  checking the  nonlinear behavior of a uniformly loaded 

shallow spherical she l l .  However, the  buckling behavior of shall0 

she l l s  with edge conditions other than clamped and for shell geomet 

other than spherical  has received l i t t l e  a t tent ion.  

contribution t o  the  l i t e r a t u r e  of nonlinear shell  analysis can 

therefore be made i n  these areas. 

The par t icu lar  probl 

A s i g n i f i c m t  

The approach t o  be investigated i n  the  present study i s  tha t  

of obtaining the displacement s e t  which minimizes the  f i n i t e -  

difference approximation of the  s h e l l  po ten t ia l  energy by u s i  

mathematical programing techniques. 

mathematical programing techniques which are presented i n  the 

l i t e r a t u r e  is  therefore required i n  order t o  determine the most 

sui table  method of minimizing a function of a la rge  number of 

variables. 

A thorough evaluation of t h e  

This thes i s  represents a f e a s i b i l i t y  study of the  d i rec t  method 

of  solution, and while only a r e s t r i c t ed  number of variables a r e  

considered i n  the  present investigation it is  intended tha t  the  

algorithm developed as a result of th i s  study w i l l  be applied t o  

problem i n  continuum mechanics which require a large number of 
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variables.  Therefore, numerical methods which a r e  e f f i c i en t  w i t h  

respect t o  both 

desired. 

chine storage and machine execution t h e  a r e  

Several algorithms f o r  minimizing an object function were 

evaluated during the  course of th i s  investigation. A mathematical 

description of each algorithm i s  presented i n  chapter V I I .  

function associated with the  nonlinear s h d l o w  s h e l l  i s  derived i n  

chapter VIII. 

were presented i n  chapter V I 1  i s  given i n  chapter Ix, and r e s u l t s  for 

t he  shallow s h e l l  for various edge conditions a r e  presented i n  

chapter X. 

changes. 

t i o n  i s  presented i n  t h e  appendix. 

The object 

A c r i t i que  of the mathematical programing methods which 

Also studied i n  chapter X is the  e f f ec t  of slight slzape 

The computer code prepared i n  the course of t h i s  invest ig  
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l i nea r  operator 

number of unknowns 

nonlinear operator 

l i nea r  part of nonlinear operator 

number of real shell s ta t ions  

surface pressure 

boundary r e s t r a in t  coefficients ( s p r h g  raLes) 

normal radius o f  s h e l l  middle surface 

pr inciple  radi i  of curvature of s h e l l  

middle surface 

ten ta t ive  length of s tep i n  one-dimensional 

search 

length of step i n  which minimurn of object 

function i s  bounded 

s h e l l  thickness 

reference s h e l l  thickness 

coefficient (see eq. (27)) 

displacement along s h e l l  meridian 

nondimensional meridinal displacement, 

s t r a i n  energy of s h e l l  

portion of strain energy associated 

bending action 
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uM 

- 
W 

W 

1 - 
y =  ( 7 2-f ' ( 0 )  f l(S))' 

portion of s t r a i n  energy associated Kith 

membrane act ion 

displacement normal t o  shell  middle surface 

nondimensional- displacement, w / z  - 

v e r t i c a l  coordinate 

coeff ic ient ,  (see eq. ( 3 3 ) )  

shear s t r a i n  

convergence tes t  parameter used i n  Newton- 

Raphson procedure 

in te rva l  between s h e l l  s ta t ions ,  b/NSTA 

surface load increment 

orthogonality condition convergence tes t  

parameter 

s t r a ins  

integrat ion factors  evaluated at  s t a t ion  i, 

and midway between s t a t ion  i and icl ,  

respectively 

circumferential coordinate 

parameter denoting length of l i n e  i n  

pi -direct  ion 

value of  A f o r  which f ( x )  i s  minimum 
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2 
IJ. 

I-= 3(f(O) - f(S)) - 
S 

Y 9  u-'2 

R 

geometric parameter f o r  spherical  s h e l l ,  

2 2  m b  
ah 
- 

Poisson's r a t i o  

poten t ia l  energy of edge forces ,  surface 

forces ,  and t o t a l  po ten t ia l ,  respect ively 
- 

portions of ITt giving rise t o  l i n e a r  and 

nonlinear components of gradient,  respectively 

nondimensional r a d i a l  coordinate, r / b  

nondhensional r a d i a l  coordinate evaluated at  

s t a t i o n  i, and midway between s t a t i o n  i 

and i+l, respect ively 

nondimens ional  

respect ively 

nondbnens ion& surface pressure 4 ( k r  
z2 a 

Cartesian tensor  quant i t ies  (i? j ,  k,  2 = 1, 2 ,  . . . f  n)  
- 

coef f ic ien ts  of quadratic terms of f(x) i j '  &ij 
a 

i s  A 

bi 

*ij 

' i jk  

defined by equation (60) 

coeff ic ients  of l i n e a r  terms of f (x)  

defined by equation (61) 

coeff ic ients  of cubic terms of f(x) 

coef f ic ien ts  of quar t ic  terms of f(x) 'i jk2 



e i 

g i  

hi 

'i j 

ti 

r i 

X i 

'i j 

i er ror  vector, hi - x 
gradient of f ( x )  

locat ion of minimum of f (x)  

assumed locat ion of minimum of 

var iable  metric 

defined by equation (37) 

conjugate gradient of f (x)  

residual vector, see equation (18) 

vector defining point on the surface 

f (x )  

i n  Euclidian n-dimensional space 

Kronecker delta, = 0 f o r  i f j ;  = 1 for i = j 

Subscripts : 

In  addition t o  subscripts on Cartesian tensor  quant i t ies  

t he  following subscripts a r e  used: 

b quant i ty  evaluated at s h e l l  edge 

r ,@ denote radial and circumferential components 

Superscript : 

A Greek superscript  i s  used t o  denote the  i t e r a t i o n  number 

i n  the  conjugate gradient search procedure. A Roman superscript  

i s  used t o  denote the  i t e r a t i o n  number i n  the  Newton-Raphson 

procedure. 

Notat  ion : 

A prime indicates d i f fe ren t ia t ion  with respect t o  t he  

independent variable . 
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Direct Method of Solving Problems i n  S t ruc tura l  Mechanics 

Rayleigh-Ritz Method.- The notion t h a t  a continuous system 

might be reduced t o  a system with a f i n i t e  number of degrees of 

freedom by assuming a def lect ion shape i s  presented by Rayleigh 

( r e f .  1). This concept was applied by Rayleigh i n  the  study of 

vibrations of continuous media. The same concept has been used by 

Timoshenko (ref 2 )  i n  t h e  study of t he  buckling of p la tes .  

Rayleigh's method was generalized by Ritz ( r e f .  3 )  who 

considered t h e  problem of determining an approximation of  t h e  

function y(x) which minimizes the in t eg ra l  

u = jr f(x,y,y ' ,y",  . . .> dx 

where f is a given function. The function y i s  r e s t r i c t ed  t o  a 

c lass  which s a t i s f y  t h e  geometric boundary conditions. For problems 

i n  continuum mechanics t h e  function U may represent t h e  to t a l .  

po ten t ia l  energy, f o r  example. In the  method presented by Ritz t h e  

solution y(x) i s  taken i n  t h e  following form 

Y 2 a i g i b )  (i = 1, . . . , n)  

where the  a are undetermined coeff ic ients  and t h e  g . (x)  a r e  

given functions each of which qatisfies the  geometric boundary 

conditions. The mnctions gi(x) a re  required t o  form a complete 

s e t  i n  t he  in te rva l  ( a , b )  i n  order t h a t  t he  sequence converge i n  the 

mean square sense. The coeff ic ients  ai are found from the  

i 1 
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necessary condition f o r  the minimum o f  U, 

au 0 aa.= 
1 

( i = l ,  . . . , n)  

The Ritz method has found wide use as a m e a n s  of obtaining a 

solution by d i r ec t  minimization of the poten t ia l  f'unction. 

example,the R i t z  method i s  used by Timoshenko i n  references 2 and 

4 i n  t h e  study of vibrations and p l a t e  def lect ion,  respectively.  

Ketter ( r e f .  5 )  uses the Rayleigh-Ritz method t o  derive the  f l u t t e r  

equations f o r  a f la t  p l a t e  and Huang ( r e f .  6) uses the method t o  

study the  vibrat ion of p la tes  including ro ta ry  i n e r t i a  and shear 

e f fec ts  . 

For 

Numerical Solutions.- For problems where it i s  impractical t o  

obtain the exact solutions,  t he  var ia t ional  methods exemplified by t h e  

Rayleigh-Ritz technique a r e  popular and powerful. The main d i f f i c u l t y  

comes i n  choosing the  appropriate complete set of functions each 

element of which satisfies t h e  geometric boundary conditions. 

Another method of solving problems which are not amenable t o  

exact solut ion i s  the  use of difference equations and appropriate 

numerica.1 techniques. The numerical solut ion of an appropriate s e t  

of difference equations is  an especial ly  powerf'ul method s ince high 

speed la rge  capacity d i g i t a l  computers are now avai lable .  

The derivation of t h e  difference equations usual ly  proceeds 

by writ ing the d i f f e r e n t i a l  equation a t  specif ic  points  i n  t h e  

continuum and by replacing continuous operators with an appropriate 

numerical approximation. 

and is  presented i n  d e t a i l  by Salvadori and Baron ( r e f .  7 ) ,  

This method has been extensively developed 
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f o r  example. 

difference equations d i r e c t l y  from the  equilibrium equations i s  

s t r a igh t  forward i n  simple s i tua t ions ;  but, for many practical. 

problems the  process becomes tedious and may involve uncertain s teps .  

Houbolt proposes t h a t  t he  appropriate difference equations be 

derived d i rec t ly ,  by minimizing t h e  energy expression. Br ie f ly  t h e  

process advocated by Houbolt consis ts  of dividing t h e  continuum in to  

a regular gridwork, wri t ing the  t o t a l  po ten t ia l  energy of  the  system 

i n  terms of displacements a t  the  g r id  s ta t ions ,  and minimizing t h i s  

energy expression with respect t o  each nodal displacement. Houbolt 

presents,as an example, t he  s e t  of difference equations associated 

with the  def lect ion of a f la t  rectangular p l a t e .  

Houbolt (ref. 8) points out t h a t  t he  derivation of t he  

Walton ( r e f .  9 )  u t i l i z e d  t h e  set of difference equations derived 

d i r ec t ly  from the  energy expression t o  determine the  bending 

deflections of f la t  p la tes .  

a s t r e s s  function and t h e  s e t  of difference equations derived from 

an appropriate energy expresslon t o  determine t h e  midplane thermal 

s t r e s s  d i s t r ibu t ion  i n  a f la t  p l a t e .  

Schaeffer and Heard (ref.  10) u t i l i z e d  

The problems considered i n  references 8, 9, and 10 were 

l i n e a r  so  t h a t  the  set  of unknown quantitites could be determined 

by setting t h e  components of gradient expressions t o  zero and using 

matrix methods t o  solve t h e  resu l t ing  equations. For nonlinear 

problems t h e  gradient expressions are nonlinear i n  terms of t h e  

unknowns so t h a t  the set of equations which results from se t t i ng  the  

gradient components cannot be solved i n  a simple manner using l i nea r  
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matrix methods. Bogner and others ( re f .  11) have u t i l i z e d  d i r ec t  

search methods using a f i n i t e  element representation of f l a t  p l a t e  

and mathematical programing techniques with success. 

determining the  nonlinear displacements of a square p l a t e  w a s  

considered and the results were found t o  be i n  excellent agreement 

wi-th the  results presented by Timoshenko ( r e f .  2 ) .  

The problem of 

The d i rec t  minimization of t h e  po ten t i a l  energy expressed i n  

terns of displacements a t  d i scre te  g r id  s t a t ion  has not been 

discussed i n  t h e  l i t e r a t u r e .  

Symmetric Nonlinear Deflections of 

Shallow Shel ls  of Revolution 

The theory f o r  t he  bending of t h i n  walled spherical  she l l s  

has a long his tory.  

H. Riessner (ref. 12) i n  19l2 who showed t h a t  f o r  non-shallow s h e l l s  

t he  bending behavior i s  r e s t r i c t ed  t o  a t h i n  region i n  the  immediate 

v i c in i ty  of t he  boundary layer .  

In t he  shallow she l l ,  on the  other hand, t he  bending ef fec ts  

The fundamental equations were presented by 

a re ,  i n  general, no longer l imited t o  a boundary layer ,  and 

asymptotic methods which have been used t o  solve t h e  deep s h e l l  

equations a r e  not applicable.  

f o r  a shallow spherical  s h e l l  i n  references 

the  expl ic i t  assumption t h a t  t h e  r a t i o  (H/a) 

Equilibrium equations are developed 

13, 14, and 15 on 
2 

i s  small compared. t o  
H - where H is  t h e  s h e l l  height and a i s  t h e  radius. A f e w  a 

solutions of t h e  l inear ized equations are presented by E. Reissner 

( r e f .  14) .  
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The investigation presented by Kaplan ( re f .  1.5) determines the 
W 

range of  nondimensional center deflection - f o r  a shallow 

spherical she l l ,  where t 

l inear  solutions a r e  valid. The range of - t 
solution i s  va l id  was found t o  be very s&. 

p = 4, (p is  proportional- t o  H’h where H is  the  s h e l l  height 

and h 

t 
is  the  s h e l l  thickness, f o r  which the 

W 
i n  which the  l i nea r  

For example, at 

0 

is  the  s h e l l  thickness),  t he  equilibrium pressure given by 

the l i nea r  solution is, respectively, 9, 23, and 50 percent too high 

when - O i s  0.1, 0.25, and 0.5. Excellent data from c a r e m y  

controlled experiments on the  la rge  deflections of symmetrically 

w 
t 

loaded clamped spherical  she l l s  f o r  a rather  r e s t r i c t ed  range of the  

spherical  s h e l l  parameter, p, i s  presented and compared t o  the  

solution of the  nonlinear equations. 

The problem of the  clamped shallow spherical  s h e l l  i s  the  subject 

of the  theore t ica l  investigations presented i n  references 16 

through 20. 

d i f f e ren t i a l  equations a r e  generally i n  disagreement with each other 

and w i t h  available experimental information. Budiansky ( r e f .  21) 

points out tha t  some of  the  trouble i n  the solutions presented i n  

These solutions which a re  based on the  same nonlinear 

references 16 through 20 i s  due t o  the  wavelike deflection 

d is t r ibu t ion  of the  she l l ,  which tends t o  increase with increasing 

values of p. Budiansky shows t h a t  f o r  values of p > 6, where the  

theoret ical  axisymmetric buckling loads a r e  i n  very poor agreement 

w i t h  experiment, the lack of correlation i s  due, to  i n i t i a l  s h e l l  

imperfections which prec ip i ta te  asymmetric buckling modes. 
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Recently several  investigators including Thurston (ref.  22) 

Archer ( r e f .  2 3 ) ,  and Mescall (ref. 24), have presented r e su l t s  

based on t h e  numerical solut ion of t h e  nonlinear equilibrium 

equations. The basis  f o r  all of these numerical solutions is  t h e  

replacement of continuous functions with a s e t  of d i scre te  values, 

and the  use of f ini te-difference approximations of t h e  d i f f e r e n t i a l  

operators. The problem of t h e  clamped spherical. shallow s h e l l  

loaded with a uniform normal pressure is  solved by Thurston (ref. 22), 

using a Newton-Raphson procedure and t h e  results a r e  compared t o  t h e  

experimental r e su l t s  of Kaplan (ref. 15). An i t e r a t i v e  method which 

u t i l i z e s  a form of Gaussian elimination i s  presented by Archer 

( r e f .  23) and i s  applied t o  the  problems of  t h e  clamped uniformly 

loaded spherical  cap and the  unrestrained s h e l l  under point load. 

A combination of t h e  Gaussian elimination technique and the  Newton- 

Raphson procedure i s  presented by Mescall (ref. 24) and t he  resu l t ing  

method i s  used t o  obtain solutions t o  the  uniformly loaded clamped 

cap and the  unrestrained cap with a concentrated load. 

An experimental invest igat ion of t h e  e f f ec t  of  boundary 

conditions on s h e l l  buckling i s  presented by Wang ( r e f .  2 5 ) .  

investigation considered uniformly loaded spherical  caps with both 

The 

hinged and clamped boundaries and it was concluded t h a t  t he  buckling 

behavior of shallow caps i s  influenced by t h e  boundary conditions. 
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Methods of Unconstrained Minimization 

An excellent review of t h e  minimization techniques f o r  nonlinear 

functions i s  presented by Spang ( r e f .  2 6 ) ,  where both gradient and 

random methods of search are discussed. The gradient method appears 

t o  be applicable t o  deterministic problems and i s  the  on ly  general 

search technique considered i n  t h e  present investigation. The 

method of steepestdescentwhich u t i l i z e s  t h e  negative of t h e  gradient 

direct ion as the  direct ion t o  proceed i n  minimizing a function was 

first  proposed by Cauchy (ref.  27) .  

method i s  found t o  have poor convergence propert ies .  

eliminate t h i s  problem, methods which employ conjugate gradients 

have been presented i n  references 23 through 34. 

In  p rac t i ca l  applications t h i s  

I n  order t o  

Rosenbrock i n  reference 28 presents a modification of steep 

descent which i s  reported t o  have convergence charac te r i s t ics  which 

a re  superior t o  the  steep descent method. The algorithm presented 

by Hestenes (ref.  29) and Beckman (ref.  30) i s  applicable t o  l i n e a r  

systems only. Fletcher and Reeves ( r e f .  3)  generalize t h e  algorithm 

presented by Hestenes f o r  nonlinear problems. 

The algorithm presented by Hestenes i s  described from a 

geometric point of view by Tomkins ( r e f .  3 5 )  who shows t h a t  t h e  

algorithm i s  essent ia l ly  a sequence of constrained s teepest  descents. 

The algorithm presented by Powell ( r e f .  32)  is e s sen t i a l ly  the  same 

as the  algorithm presented by Fletcher and Reeves. 

The algorithm which i s  presented by Davidon ( r e f .  33) and 

which i s  presented i n  s l i g h t l y  modified form by Fletcher and Powell 
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(ref. 34) employs the concept of a variable metric. 

this algorithm is similar to the Newton-Raphson technique and is 

reported to have similar convergence characteristics. 

In principle 
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V I I .  MINIMIZATION OF U N C O N S T R A m  FUNCTIONS 

The solution of many problems i n  t h e  f i e l d  of continuum 

mechanics can be reduced t o  t h e  minimization of a function of many 

variables which has t h e  following form. 

f ( x )  = b.x .  1 1  t aijxixj t cijkxixj’;d + dijk2Xixj%xZ ( 3  1 

where x are unknowns, bi, aij, C ijk and dijk2 a r e  constants. 
i 

In  writ ing equation (3) t h e  well-known range and summation 

conventions of index notation have been used (see ref. 36, f o r  

example). Functions such as equation ( 3 )  which involve products of 

t he  unknowns through t h e  fourth degree a r i s e ,  f o r  example, i n  

studying t h e  behavior of p l a t e s  and she l l s  when the  e f fec ts  of 

geometric nonl inear i t ies  are included. 

It is assumed t h a t  t h e  m c t i o n  

can be calculated at any given point x . It i s  a l s o  assumed 

f (x)  and t h e  gradient vector 

af 
5T- i 

t h a t  f (x)  i s  continuous and has continuous derivatives through 
1 

t he  second order. Thus, i n  the  neighborhood of t he  required 

minimum, hi, the  function f (x)  may be expanded by using a Taylor 

se r ies  t o  give the  following: 

- 
f ( x )  2 f ( h )  t aij hi-xi) (h -x ) 

j j  

where terms involving products of t h e  unknowns of higher than 

t h i r d  degree have been neglected. I n  what follows t h e  function 
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f(x) 

convenience. 

vanishes at t h e  minimum has been used, and t h e  matrix of coeff ic ients ,  

a2 ~, has been taken t o  be symmetric. 

w i l l  be s e t  equal t o  t h e  truncated Taylor series f o r  

I n  writ ing equation (4) t h e  f a c t  t h a t  t h e  gradient 

- 
Also note t h a t  gi i s  composed 

J-J 

of t he  

dijkZ 

se r i e s  

'J - 
matrix aij i n  addi t ion t o  appropriate elements of cijk ana 

which are associated with second degree terms i n  the  Taylor 

expans ion. 

Since the  second-order terms of t h e  Taylor series expansion 

dominate i n  t h e  region of t h e  minimum, methods which exhibit  

quadratic convergence w i l l  converge quickly for t he  general function. 

Quadratic convergence means t h a t  f o r  a quadratic flrnction t h e  

minimum i s  located exactly, neglecting round-off errors ,  i n  a 

f i n i t e  number of i t e r a t ions .  The number of i t e r a t ions  is  usual ly  

equal t o  or less than t h e  number of unknowns. 

It is appropriate t o  discuss sequential  search methods of 

minimization ra ther  than other methods, such as those u t i l i z i n g  

Monte Carlo techniques, f o r  instance, because sequential  search 

methods are quadratically anvergent .  

sets up an algorithm f o r  finding a new approximation of t h e  

minimum i n  terms of t h e  present approximation i n  t h e  following 

form: 

A sequential  search method 

a a  a a+1 
X = xi + a pi i 
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where a Greek superscript  is  used t o  denote t h e  i t e r a t i o n  number 

and does not obey the  ru les  of index notation, and where 

a a is  a real number 

a i s  a vector p i  

a 

U a 

The vector pi represents t h e  best  d i rec t ion  t o  proceed from 

x where xi is  considered as representing t h e  coordinates of 

a point i n a n  n-dimensional euclidian space where 

i 
n i s  the  number of 

U unknowns, and t h e  number a represents an optimum distance t o  be 

traversed from x i n  t h e  d i rec t ion  p . Equation ( 5 )  i s  

t o  be used t o  generate a sequence of points  

xi f x i  

a U 
i i 

* 7  . .  1 2  
xi , xi , 

a a+l subject t o  t h e  condition t h a t  

f(xa+l) < f(xa) 

There a r e  two basic  determinations which must be made i n  

moving from one point t o  another i n  t h e  sequence. 

direct ion,  p , must be found; and, second, t h e  optimum distance 

First, t h e  bes t  
a 
i 

a a a 
a , for the move along p from x must be determined. i i 

S t  e ep es t Des c ent 

It i s  reported tha t  Cauchy (ref. 27)  was one of the f i rs t  t o  

invest igate  the  question of t h e  direct ion i n  which t o  proceed from 

a given point x . He reasoned t h a t  the direct ion should be 

chosen such t h a t  t he  function is decreased most F p i d l y  at x 

a 
i 

a 
i 

. The direct ion i n  which t h e  function a+l when proceeding t o  xi 

a changes most rapidly at  t h e  point xi can be determined as 
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a a 
follows. Consider t h e  points xi and xi fdxi which l i e  on 

the  surfaces 

between the  points x and x 

relat ions:  

f(x?) and f x p d x  ( respectively.  The distance 

is  given by the  following 
i 

a 
i 

2 as =dx.dxi  
1 

The r a t e  of change of t h e  function when proceeding along t h e  l i n e  

between x and xi +dxi is  given by the following: U a 
i 

df af ;-i;=Faxi 

(7) 

It i s  c l ea r  that the  change i n  the  function ds df i s  

a completely determined at t h e  point xi by specifying dxi since 

the quant i t ies  

function depends only on the direct ion of descent at 

upon the  curvature. 

af are known. Also, the rate of change of t h e  q 
a 

xi and not 

01 Now l e t  u represent t h e  d i f f e ren t i a l s  dxi at  x . It i s  i i 
df required t o  f ind  the  value of u such t h a t  t h e  quantity - 

i ds 

becomes an extremum. This problem can be solved by equating a l l  

the  derivatives of - df with respect t o  ui t o  zero ,  thus; 
ds 

a df 
a u_ 1 [E) = O 

The following equation r e su l t s  a f t e r  performing t h e  

differentat ion indicated i n  equation (9) and noting i n  addi t ion 

(9) 

af is  independent of u and tha t  ds i s  a function o f  ui. that ax. i 
1 
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Equation (10) c m  be represented by the  following form 

since i i s  the  only f r e e  

may thus be interpreted as 

af dx. = Const. a 
X i 1 

index i n  equation (10). 

saying t h a t  a necessary condition f o r  

Equation (ILL) 

a 
maximum ascent or  descent from the  point x on the surface i 

f (xT)  i s  that the  d i f fe ren t ia l s  dx 

known p a r t i a l  derivatives ax, af 
be proportional t o  the  1 

a evaluated at  the  point xi . Since 

the  quant i t ies  

it follows t h a t  

of the function 

i n  the function 

a I af represent the  gradient of the function at  xi ax; 
I a a move from x i n  the  direct ion of the  gradient 

evaluated at  x w i l l  lead t o  the  greatest  ch 

i n  the  immediate neighborhood of the point 

i 
a 
i 

01 

xi 
a Thus if the direction p is  chosen as the  negative gradient. i 

the function will undergo the  most rapid decrease i n  the v i c in i ty  

of x . a 
i 

The sequential search technique which u t i l i z e s  the  negative 

a gradient as the  direct ion 

a 

pi , and which subsequently determines 
a 

by locating the minimum of the  function along' the  l i n e  
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a a a  x + a pi is  termed the method of steepest  descent. The 

sequential search technique is  termed the  method of optimum gradients 

i f  the negative gradient is  used as the  direct ion 

determined so  t h a t  the  inequality (6) is  sa t i s f i ed .  

procedure termed steepest  descent has been widely used especially 

i n  the  f i e l d  of optimum control (see refs. 37 and 38 f o r  instance).  

However, the  method of steepest  descent as used i n  the above 

references and as defined above does not converge quadratically.  

A s  a matter of fact ,s teepest  descent methods a r e  known t o  converge 

very slowly near the  minimum of the  function. In addi t ion, this  

method i s  very inef f ic ien t  i n  minimizing a function which, when 

represented as a hypersurface i n  euclidian n-space, has the 

character of a long narrow curved o r  winding valley, because short  

zig-zag steps across the  valley rather  than long steps down the  

valley a re  taken. 

i 

CL 
pi and aa i s  

The numerical 

The Method of Conjugate Directions 

It is  shown by Tomkins ( r e f .  35)  t h a t  the  steepest  descent 

algorithm, as outlined above, can be modified so as t o  be 

quadratically convergent. 

by requiring t h a t  each direct ion p 

t o  the  direct ion pi 

conjugate is  taken t o  mean t h a t  the  vectors s a t i s f y  a 

general orthogonality condition. 

a lso be used i n  the  following development and indicates t h a t  the 

The steepest  descent method i s  modified 
a of the sequence be conjugate i 

a-1 
of the  previous move where the  term 

The terminology a-conjugate will 



- 29 - 

vectors satisfy an orthogonality condition with respect t o  the  

metric a - The method of conjugate directions was or ig ina l ly  

presented by Hestenes ( r e f .  29) as a method of  solving the  

equivalent problems of finding the solutions t o  a s e t  of 

i j  

sjmultaneous equations o r  of finding the location of the minimum 

of a sui tably defined quadratic function. 

shown by Fletcher and Reeves ( r e f .  31) t h a t  the general algorithm 

presented by Hestenes when sui tably modified is an e f f i c i en t  

It was  subsequently 

algorithm f o r  locating the  unconstrained minimum of an object 

function having the form of equation ( 3 ) .  

presented by Fletcher and Reeves ( r e f .  31) the method of conjugate 

gradients is  shown t o  be far superior t o  the method of steepest  

For the  example 

descent. The algorithm f o r  the  method of conjugate direct ions,  

as  presented by Hestenes i s  as  fol lows.  

Consider a s e t  of l i n e a r  algebraic equations which i s  writ ten 

i n  the  following form using index notation. 

a i j ~ j  = - bi 

It i s  assumed that a solution 

exis ts .  
hi of the system of equation (13) 

U Assume t h a t  a s e t  of n a-conjugate vectors p 

(a = 1, 2 ,  . . ., n) ,  (i = 1, 2, . . ., n) ex is t s ,  thus 

pi pjp a = 0 f o r  a f P .  Furthermore, a 

t o  be posi t ive def in i te  s o  t h a t  f o r  u = p the  produc-k 

i 

U 
w i l l  be r e s t r i c t ed  

i j  i J  
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u u  U pi p j  aij > 0 .  Since t h e  elements p are a-conjugate, t he  i 

vectors are l i n e a r l y  independent and form a basis  i n  n-dimensional 

euclidian space. 

since if p 

the  orthogonality condition. The solut ion vector h, can thus be 

The set of a-conjugate vectors are independent 

then hpi p .  aij f 0 and does not satisfy P a u a  
= hpi 

i J 

wri t ten as a l i n e a r  

hi 

Clearly, t h e  s o l u t i  

I 

U combination of t h e  pi as follows: 

1 1  2 2 ,  n n  = c p i  + c p i  * - . + C P C  

n hi i s  determined if t h e  .ca are kn m. 

The 

by a. .p . , and by noting t h a t  t he  direct ions p are 

a-conjugate. Thus, 

ca follow d i r ec t ly  by multiplying each s ide  of equation (14) 
a U 

1J  J j 

U u a a  
a i j  .h.p J i = c pi p j  aij 

and consequently 

U a a  c = -b.p "/...p. p i i  1 ~ 1  j 

where use has been made of equation (13). 

writ ten as follows: 

The solut ion can now be 

n 
b iP i  l + .  . . +  

aijpi Pj  
n '  n P2 h2  = - 
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The method outlined above has been developed by using a general 

set of  a-conjugate direct ions.  

the  set of direct ions a r e  chosen so as t o  be related t o  the  gradients.  

A very elegant algorithm results i f  

This method which is  ca l led  t h e  method of corkjugate gradients i s  

described below. 

The Method of Conjugate Gradients 

Equation (13) i s  an equal i ty  only when the  vector xi 

corresponds t o  t h e  solut ion vector hi. In general, f o r  xi # hi, 

it i s  proper t o  define t h e  residual  vector as follows: 

where r i s  termed the  residual  vector. When xi = hi the  

residual  vector i s  a n u l l  vector. 

i 

The method of conjugate gradients,  which w a s  evolved by 

Hestenes and explained by Beckman,is derived by forming two 

conjugate sequences by the  Gram-Schmidt orthogonalization procedure: 

a set of res idual  vectors,  r , which a re  orthogonal i n  t h e  U 

i 

= 0 f o r  u f p and i s  not equal. t o  a c t  
j 

ordinary sense t h a t  r 

U zero f o r  u = P ,  and a set p which is  a-conjugate. The 
i 

residual  vectors and the  direct ion vectors are formed i n  the  

It is assumed tha t  one 

been formed. The elements 

n n . .  .; ri , Pi * 

U of the  s e t s ,  ri f o r  instance, has 

u r are by def in i t ion  orthogonal and i 
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a re  thus l i n e a r l y  independent. Using t h e  set of vectors ria 
a 

a s e t  of a.-conjugate vectors p can be determined as follows: i 
1 

Let pi = r ’: p: can now be chosen as a l i n e a r  combination i 

= r + c2’pi”. The vector p w i l l  be 2 1 2  
Of ri ana P i  J P i  i i 

a-conjugate t o  p i f  t h e  constant c2l  i s  chosen so  t h a t  t he  i 
2 I 

vector a. .p is  orthogonal t o  the  vector pi , thus 
1J j 

2 1  .2 1 21 1 1 
pi p .  aij = 0 = a .r. pi 

J iJ J + c pi p j  aij 

and consequently 

21 1 1  c = -a 

1 2  In  general, a f t e r  having determined pi pi , . . ., 
a+1 can be wr i t ten  i n  the  following form. a pi ( a a ) ,  the  vector pi 

a+l,a a 
pi * .  . + c  a+l + ca+lJ1 1 + 

i pi = r  a+1 
pi 

a Equation (21) i s  multiplied by a . . p  t o  give 
1~ j 

a a+l a+lJa a a  0 = a .p. r + c  a. .p. p 
i j  J i 1 J  J i 

where the  condition of  orthogonality has been used. 

a+l Ja 
t h a t  the  coeff ic ient  c is  given by the  following 

It follows 

a+l ,a = -a p ar a+’/ a a  
a.  .p. p 

i j  j i 1J J i 
C 
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A s e t  of  a-conjugate direct ions p a can therefore  be i 

developed from the  orthogonal set ria by application of t he  

following recursion formula: 

A recursion r e l a t ion  f o r  t he  set of orthogonal res idual  

a vectors r can be derived i n  a similar manner by assuming t h a t  i 
a a s e t  of a-conjugate vectors pi are available.  The u+l 

element i n  t h e  s e t  of res idual  vectors i s  then taken i n  the  

following form. 

a+1 a + +,a+l,l a . p l + .  - . + p+La r = r  a 
“ijPj i i J  j i 

a Equation (20) i s  multiplied by r t o  give. 
i 

a a a+l,l a p.lr.a + . . . + t a+l ,a ai j~ jari a O = r . r  + t  
i i  i j J  1 

where the  condition of orthogonality has been used. It follows 

t h a t  the coeff ic ient  t is given by the  following a+l ,a 

ta+lJa = -ri a rF/aijpd a a  ri 
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It w i l l  now be shown that  a ~ . ~ r . p  = 0 f o r  P f a+l o r  
i j  1 J 

from equation (18) is as follows: a+l P f a. The error  r i 

r i a+l = -ki jxj  a+1 + bi) 

The subst i tut ion of equation ( 5 )  i n to  equation (28) gives the 

following: 

a+l a a  a = r  - a a . . p  
ri i 1J  3 

The mult ipl icat ion of each term of equation (29) by rip gives 

the  following: 

a P  a a P  - a a  p a+lr P 
i j  j ri r = ri ri 

a Since t h e  vector r i s  an element of an orthogonal set it 

follows d i r ec t ly  from equation (30) that  t h e  quantity 

a p .  r = 0 f o r  P = a o r  P = a+l. Thus equations (24) 

and (25 )  can be wri t ten i n  t h e  following form: 

i 

a 
i j  J i 

a+l u+l a a 
P i  = ri - P P i  
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and 

a+1 a a  a - a a  p 
i j  3 ri = ri 

where 

a a  = a . . r  a+1 .p . p pa 1J i p j  ij j i 

a 

(33 )  

(34) 

Notice t h a t  r: can be determined from equation (32) s ince 

r and p: are known (recal l  t h a t  p> = r I). The remaining i i 
a elements of each of t h e  conjugate sets 

determined by recursively using equations (31) and (32). 

coeff ic ient  a in  equation ( 5 )  is  determined by subs t i tu t ing  

ria, a.ij p j  can now be 

The 

a 

equation ( 5 )  in to  equation (18) and comparing the  resu l t ing  form 

t o  equation (32). It i s  determined tha t  aa is  as defined by 

equation (34), so that t h e  aa used i n  equations ( 5 )  and (32) are 

ident ica l  . 
The basic algorithm f o r  t h e  conjugate gradient method is  

summarized as follows. Let  x: be an a rb i t r a ry  approximation 

of the solut ion vector, hi. The following formulas describe the  
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fundamental i t e r a t i v e  procedure which w i l l ,  neglecting round-off 

e r ror ,  lead t o  t he  solution of t h e  set of l i n e a r  equations 

represented by equation (13). 

1 1 
Pi = '1 

a a a  = X  + a p i  a+l 
i i X 

a a a - a a . . p  
i 1 J  j 

= r  a+l r 
i 

a + l  a + l  a a 
-I- c P i  i = r  P i  

where : 

a ar a/aijpj a a  ri a = r  i i  

a a a  
c = -a i j  r i a+lpja/aijpi p j  

( 3 9 )  

The method of conjugate gradients as summarized above i s  

discussed by Tomkins ( r e f .  3 5 )  from the  geometric point of view, 

as a method of locating the  minimum of a hypersurface defined i n  

euclidian n-dimensional space. The hypersurface i s  defined by the  

following re la t ion  

f ( x )  = aij(hi-xi) (hj-xj) 
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The gradient of t h i s  function, f o r  symmetric a is  given by i j  

a 

U 
By noting equations (13) and (18) it is seen tha t  

proportional t o  the residual  vector 

gi i s  

a 
ri . 

Sequential Search Methods For Locating the Minimum 

of Nonquadrat i c  Functions 

Two algorithms have been reported i n  the l i terature as being 

effect ive methods f o r  locat ing the unconstrained minimum of non- 

quadratic functions of t he  form given by equation ( 3 ) .  

these i s  the variable metric method which w a s  evolved by Davidon 

(ref.  33 

Fletcher and Powell (ref.  34).  

gradients as presented by Fletcher and Reeves (ref. 31). 

these algorithms i s  described below. 

One of 

and which w a s  presented i n  s l i g h t l y  modified form by 

The other  is  the  method of conjugate 

Each of 

ConjuEate Gradient Method.- The method of conjugate gradients 

as presented by Hestenes (ref. 29)  and Beckman ( r e f .  3 0 )  is  an 

elegant method f o r  solving the  equivalent problems of determining 

the  solut ion of a set of simultaneous equations o r  of locat ing the 

minimum of a quadratic function. The method i s  quadratically 

convergent so  t h a t ,  neglecting round-off e r rors ,  t h e  solut ion w i l l  be 

determined i n  n steps.  The appl icabi l i ty  of t h e  basic conjugate 

gradient algorithm has been evaluated f o r  finding the unconstrained 
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minimum of a nonquadratic function by Fletcher and Reeves (ref.  31). 

The algorithm presented by Fletcher and Reeves i s  very similar t o  

t h a t  presented Hestenes. 

coefficient a i n  equation ( 5 )  is  not d i r ec t ly  determinable f o r  

The basic difference i s  t h a t  t h e  

U 

a nonquadratic function, but must be located using a numerical 

technique. The value of aa f o r  t he  nonquadratic function i s  

taken such t h a t  t he  function 

x 

satisfies the  following equality.  

f (x)  is a minimzun along the  l i n e  

u CLa 
+ a pi . That is  aa is  equal t o  t h e  value of h which i 

For an arbitrary i n i t i a l  s t a r t i n g  point x ’, set  i 

1 - 1 
P i  - -gi 

U 
is  the  gradient of function represented by equation gi 

(3L thus 

where 

u+l The new point x i s  given by i 

(44) 

u a a  = xi + a pi a+l 
X i (45) 
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U where a is chosen s o  t h a t  equation (43) i s  sa t i s f i ed .  The new 

direct ion pi a+1 i s  then determined from t h e  following re la t ion  

where 

c U = gi Qi a+ygjagja (47) 

a It can be shown that the magnitude of c as determined from 

equation (47) i s  the same as t h e  magnitude of 

from equation (40) for a quadratic m c t i o n .  

U c as determined 

Fletcher and Reeves leave one w i t h  t h e  impression t h a t  t he  

algorithm which i s  represented by equations (36) through (39) i s  

va l id  only i f  t h e  matrix a has many zero elements. Ln fact:,  

however, va l id i ty  and app l i cab i l i t y  of‘ t h e  algorithm i s  independent 

of t h e  s t ruc ture  of  t h e  matrix a 
symmetric. 

- 
i j  

except t h a t  gij must be i j ’  

Variable Metric Method of Minimization.- The variable metric 

method of locating the unconstrained minimum of a function of 

several  variables w a s  evolved by Davidon (ref. 33) and w a s  f’urther 

refined by Fletcher and Powell (ref. 34). 

Consider a function f (x )  where the  set x, spec i f ies  the 

coordinates of a point i n  an 

s e t  xi f o r  which f ( x )  i s  

I 

n-dimensional l i n e a r  space, . The 

constant forms an n-1 dimensional 

L1 
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surface i n  t h i s  space. One surface,  of the family of  surfaces,  

passes through each point x4 ,  and the surface i n  the  neighborhood 
L 

a f ( d  me of the  points i s  characterized by the  gradient gi = .-ax,- 
I 

components of t he  gradient can be interpreted as defining a point 

i n  a.nother l i n e a r  space . L2 
Consider now a flmction which i s  continuous and which as 

continuous derivatives through the  second order. In  t h e  

neighborhood of t he  point a i n  L1 the  function f (x )  can be 

represented by a Taylor s e r i e s  expansion about t he  point a as 

fo l lows  

The gradient g i s  as follows 
i 

where terms of second degree and higher i n  

For convenience, t h e  expression given by equation (49) w i l l  be 

x have been neglected. 

t rea ted  as an equal i ty  i n  what follows. 

It follows d i r ec t ly  from equation (49) t h a t  t h e  change of 

t he  gradient d g  is  given by t h e  following expression 
i 



Equation ( 5 0 )  specif ies  a l i n e a r  mapping of changes of posi t ion 

i n  L1 onto a corresponding change i n  gradient dgi i n  1; 2’ 

If the matrix were independent of xi then the  value of 
1 J  

the  gradient a t  one point would be suf f ic ien t  t o  determine t h e  

minimum. I n  t h a t  case t h e  desired change i n  the  gradient is  -,gi 

so  t h a t  t he  associated change 

However the  matrix 

second degree i n  t h e  unknowns 

a2f 
Z Z K -  

1 J  

i n  x could be found by inverting i 

, f o r  an object function of grea te r  then 

is  not constant. a2f t h e  matrix a 
1 J  

is  not constant. a2f t h e  matrix a 
1 J  

Also, exp l i c i t  evaluation of t h e  matrix and i t s  subsequent inversion 

(which i s  i n  essence t h e  Newton-Raphson procedure which w i l l  be 

discussed later)  at  a point which is  far from t h e  minimum of t h e  

function may not represent an optimum expenditure of computatioinal 

e f fo r t .  

tlze ZZET’ Instead of exp l i c i t l y  evaluating the  inverse of 
1 J  

inverse w i l l  be assumed. The approximation of the  inverse which 

w i l l  be designated as U specif ies  a l i n e a r  mapping of changes Hij  

i n  the gradient i n  L2 onto corresponding changes i n  posi t ion L . 
This matrix which i s  the  metric of t he  

1 
space i s  r e s t r i c t ed  t o  L2 

be symmetric and pos i t ive  def in i te .  

An algorithm f o r  systematically improving t h e  metric so t h a t  the  

minimum of the  function is  determined i n  a f i n i t e  number of steps i s  

now required. It is  specif ied t h a t  t h e  improved metric designated 

a+l i s  t o  be formed such t h a t  all t h e  information contained. i n  *i j 

U K i s  retained and i n  addition has the  following property. 
ij 
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U u+l a 
Hij &j = 

where 

U u+l u a u 
Axi = x i  -xi = a pi 

and 

The coeff ic ient  

minimum along t h e  l i n e  defined by equation (52). 

of equation (52) i n to  (51) gives t h e  following 

a' is  chosen such t h a t  t h e  obje.ct function is  a 

The subs t i tu t ion  

(54) 

i n  such a way t h a t  
Hij  

It i s  now required t o  form t h e  matrix 

equation (54) is  satisfied and so  t h a t  t he  information contained i n  
U is  retained. The simplest way of sa t i s fy ing  the  last Hi j 

requirement is  t o  consider H,, as t h e  matrix H,, plus a 
u+l U 

correction fac tor ,  

Consider therefore  

Ad J-d 

or factors,  such t h a t  equation (54) is  s a t i s f i e d .  
u+1 i n  the following form 'i j 

U U U 

- + A 1 9  + Bij 
a+l 

Hi j - Hij ( 5 5 )  

The subst i tut ion of equation (55) in to  equation (7.4) gives the  

following 
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U a a a  

(Hij + A  i j  
+ Bija) Agja = a pi 

In equation ( 5 6 )  all t h e  quant i t ies  are known except t he  matrices 

Aij and Bij . These mtrices are determined as follows. U U 

The vector 

a a = H .a&j 
'i i J  

U a. 
i j  

is  not i n  general colinear with p . Therefore, choose B 

such t h a t  

i 

a a a 
Bij Agj = -t i 

a and Aij such t h a t  

a a  Aij U Agj a = a Pi 

(57)  

It can be shown by d i r ec t  subst i tut ion in to  t h e  appropriate 

equation (58)  o r  (59) t h a t  acceptable forms f o r  Aij 

a r e  as follows 

U a 
and Bij 

( 5 9 )  

- a 
Aij - 

a a a  
a. Pi P .  
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U where ti i s  given by equation (57): 

The expression f o r  t he  improved matrix, equation ( 5 5 )  thus 

becomes 

a+l The new direct ion p is taken t o  be i 

a+l a+l u+l 
pi = -Hij gi 

since from equation (30) and (52) 

- a+l 
p i  - 

-1 

a+l ana E,, has been ident i f ied  as the  approximation t o  the  
LJ 

inverse of t he  matrix 

For t h e  general case where t h e  object function is  nonquadratic, 

U the  coeff ic ient  a must be found by a numerical technique 

whereby t h e  minimum along t h e  l i n e  x + hpi i s  located. For t he  

case of a quadratic function however, a is  determined exp l i c i t l y  

from the  following equation 

a a 
i 

a 
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where 

It is  shown by Fletcher and Powell t h a t  t he  algorithm 

presented above f inds t h e  minimum of a quadratic function i n  

n- i terat ions.  It is also shown t h a t  after n- i te ra t ions  the  

matrix Hij i s  t h e  inverse of  t h e  matrix aij given by 

equation (66). 

n 

The generalized Newton-Raphson method.- The generalized 

Newton-Raphson method i s  a sequential  method of 1oca.ting t h e  

minimum of a function o r  of  solving a set of nonlinear equations. 

However, t h e  term sequential  does not ord inar i ly  connote the  

same meaning as was implied i n  t h e  discussion of the  methods of  

conjugate gradients.  

Consider once more a general function f (x)  . It w a s  shown i n  

the  previous section t h a t  if  f ( x )  and i t s  derivatives through the  

a second order a r e  continuous a t  t he  point x t h e  Taylor s e r i e s  i 
expansion i s  given by equation (48) and the  gradient by equation (49), 

which i s  repeated below 

gi(x) = a aflxaJ + aT a2dxa) (. -X a) + H.o.T. 
X i x x  i j  j j  

(49) 
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Let us now assume t h a t  the  solut ion is located at  

a necessary condition for a re l a t ive  minimum i s  t h a t  t he  gradient 

h . i Thus s ince 

vanish it follows t h a t  

where terms of greater  then the  first degree i n  x have been 

dropped and where 

e a = (gja-xja) 
j 

a a2f are known at x , t h e  af 
j 

Since the  quant i t ies  
1 J  

a e r ro r  vector e 

fol lows 
j 

can be found by l i n e a r  matrix methods as 

where 

If the  e r ror  

-1 
a 

i 

is t h e  inverse of the  
axidxj . [". I 

leja( i s  l a rge r  than a preassigned small number, 

6 ,  then a new i n i t i a l  point i s  taken as: 

a + ei 
a+l a 

i = xi X 
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Equation (69) i s  then reapplied u n t i l  t he  convergence c r i t e r ion  i s  

sa t i s f i ed .  

together with general conditions which, if  satisfied, guarantee 

that  the sequence of solutions w i l l  converge. 

The method is  presented by McGill (ref. 3 9 ) ,  

The algorithm as presented McGill (ref. 39) and others i n  the 

l i t e r a t u r e  has a serious drawback. The sa t i s f ac t ion  of equation 

(69) means only t h a t  the  solut ion vector is  associated with a 

s ta t ionary  point on the hypersurface 

saddle point o r  a maximum ra ther  than a minimum. 

guarantee t h a t  the solut ion i s  associated w i t h  a minimum it is 

necessary tha t  the following condition be s a t i s f i e d  f o r  each 

sequence of points  

f (x) . The point may be a 

In order t o  

f (xa+') < f( x") 

The One-Dimensional Search 

In each of t he  techniques discussed i n  t h e  foregoing sect ion 

it i s  t a c i t l y  assumm ed t h a t  t h e  parameter a which appears i n  

equations ( 5 ) ,  (45), and ( 5 2 )  can be found i n  an e f f i c i en t  

manner such that the  orthogonality condition 

a 

i s  sa t i s f i ed ,  where Cp is  the angle between t h e  gradient vector, 

and t h e  conJugate gradient vrktor,  and t h e  notation indicates  I /  
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the  absolute value. 

elsewhere i n  the  l i t e r a tu re ,  a r e  presented below. 

Various methods, which have been discussed 

In genera1,the r e l a t ion  (72) cannot be exactly s a t i s f i e d  

because of round-off error .  Thus a' i s  actual ly  determined such 

that cp = IL E where E i s  a preassigned small posi t ive number. 

It follows d i r ec t ly  from a well-known trigonometric i den t i ty  tha t  

2 

and fur ther ,  f o r  E << 1 it follows t h a t  

Thus if a' is  chosen such t h a t  

IT 
the  angle cp w i l l  d i f f e r  from the  desired radians by not 

more than E radians. Theoretically E could be made as small as 

desired, but prac t ica l ly  f o r  a given digital. computer E w i l l  litwe 

a lower l i m i t  because of round-off error .  

The overal l  r a t e  at which the  conjugate gradient method 

converges t o  a minimum of the  object function i s ,  t o  some degree, 

re la ted t o  the  efficiency of the one-dimensional search technique. 
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U 
The one-dimensional search should be capable of finding the  

subject t o  t he  condition given by equation (73) with as few 

function and gradient calculations as  possible.  

a 

A typ ica l  p lo t  of t he  object f'unction with a parameter A is 

shown i n  f igure  1, where 

f(x) = f(xU+ApU) 

U where f ( x )  is  the  var ia t ion of t h e  function from point xi i n  

t he  direct ion of pi and where xu, f(x'), pi and gi a r e  

known a t  t he  start of a one-dimensional search. 

value & is  t h a t  value of A f o r  which the  inequality (75) is  

U U U 

The required 

sa t i s f i ed .  

The par t icu lar  technique chosen t o  f ind  Am is dependent 

t he  manner i n  which the  problem is specified,  t h a t  is, whether 

not the  gradient components a r e  ana ly t ica l ly  prescribed or a re  

calculated by f in i te -d i f fe rence  approximations. Whatever t h e  

method, however, the calculat ion w i l l  consist  of th ree  par t s :  

OD 

o r  

-the 

estimation of 

t i on  of Am u n t i l  a c r i t e r ion  is  sa t i s f i ed .  

Am; the  bounding of t he  minimum; and the  interpola-  

Estimation of Am.- To a great  degree, t h e  eff ic iency of the  

one-dimensional search technique i s  dependent on the  i n i t i a l  

estimate of 

lead t o  an excessive number of calculations i n  order t o  bound the  

Am since an i n i t i a l  estimate which is  too small w i l l  

minimum. I n  order t o  obtain an estimate of Am suppose t h a t  an 
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fo4 

h 

Figure 1.- One dimensional var ia t ion  of object functim. 
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estimate, e s t ,  of the  minimum value of f ( x )  i s  available.  "lien, 

by assuming t h a t  the  estimate is  correct,  tha t  the minimum l i e s  

along the  l i n e  xi fhpi , and t h a t  the  function f ( x )  is  quadratic 

the  value Am i s  given by t h e  following equation: 

a u  

= (Am)est 
Bounding the  minimum.- A ten ta t ive  s tep  length 

is  taken and the  slope 

A = s ,  2 s ,  4s, . . . u n t i l  t h e  slope f '  i s  nonnegative. Let s 
f '  = - df 

dA i s  examined a t  the  points 

be the  value of A associated with the  point at which f * 

becomes nonnegative, then t h e  minimum l i e s  in t h e  in t e rva l  

0 < Am < s. 
Cubic interpolat ion.  - Since the  function values f (0) , f (s)  

and the  slopes f (0) , f (g) a r e  readi ly  avai lable  it is  

appropriate t o  use all of t h i s  information t o  f ind  an interpolated 

value of t he  minimum. A cubic interpolat ion method first proposed 

by Davidon and subsequently u t i l i z e d  by various invest igators  

u t i l i z e s  a l l  of these known quant i t ies .  

curve i s  passed through t h e  given points with t h e  prescribed 

slopes and then the  minimum i s  estimated by the  following 

relat ionship 

In t h i s  method a cubic 
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where 

1 - 
y =  ( 7 2-f '(0) f ' ( S ) ) 2  

It i s  shown by Davidon tha t  the root given by equation (78) 

l i e s  i n  the  in te rva l  0 < - A <, . . 
By repeatedly applying the  above interpolation scheme, the  

orthogonality constraint  given by equation (74) can be sa t i s f i ed .  

However, actual  calculations have indicated tha t ,  because of 

round-off error ,  no improvement is made a f t e r  the  second o r  t h i r d  

interpolation. 

Quadratic interpolat ion.-  For the  case where the  gradient 

components a re  calculated numerically using a f in i te -d i f fe rence  

approximation, it becomes time consuming t o  calculate  all t he  

derivatives which a re  necessary i n  the  cubic interpolat ion scheme. 

For t h i s  case it i s  more e f f i c i en t  t o  f i rs t  bound the  minimum by 

finding some value of A such that f ( A ) X ( O ) .  Then, using a 

f i n i t e  difference approximation the  slope f ' (0) i s  calculated. 

The interpolated value of the  minimum is then given by the  

following equation 

where 
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7 = &{f(Z)-f(O)-Zf t ( 0 ) )  
S 

A s  i n  the  case of cubic interpolat ion,  the  orthogonality 

condition equation (74) can be s a t i s f i e d  by repeated application 

of equation (81). 

method indicates t h a t  it i s  more e f f i c i en t  t o  accept t he  first 

value of 

However, very l imited experience with t h i s  

given by equation (81), provided t h a t  t he  r e l a t ion  

i s  sa t i s f i ed .  
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V I I I .  THE N0NLIXU.R BMAVIOR OF A SHALILOW SHELL OF REVOLUTION 

S W E C T  TO AXISYMMETRIC LOADS AND ARBITRARY EDGE RESTRAIN!I’S 

The object function f o r  a conservative e l a s t i c i t y  problem 

such as a shallow shell is the  poten t ia l  energy of the  shell. 

s e t  of displacements corresponding t o  t h e  s h e l l  equilibrium s t a t e  

The 

is then t h a t  s e t  which makes the  poten t ia l  energy a minimum. 

The s h e l l  geometry i s  shown by f igure 2. The shape i s  taken 

t o  be a shallow surface of revolution, and i s  not r e s t r i c t ed  t o  

be a spherical  shallow she l l .  The thickness, t, and the modulus 

of e l a s t i c i ty ,  E, may vasy along the  s h e l l  meridion. The 

displacements u, w, a re  posi t ive as shown. The displacements u 

and w, and the  slope, 5, ’‘ may be e l a s t i c a l l y  res t ra ined a t  the 

shellboundary. 

- -  I 

- 

The loading i s  taken t o  be axisymmetric, however, 

it i s  assumed tha t  no concentrated force ex is t s  at  the  center of 

the  she l l .  

Strain Potential  

The s t r a i n  energy f o r  an isotropic  e l a s t i c  s h e l l  i s  given 

by the following (see r e f .  40, f o r  example). 
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r 
RG = OP 

Figure 2.- Shallow shell geometry. 
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where : 

€ E  r' 8 

yr8  

r, 

Z 

V 

are  physical normal s t r a ins  i n  the  r and 6 coordinate 

d i rec t  ion 

i s  the  physical shear s t r a i n  

a re  orthogonal surface coordinates 

i s  the coordinate normal t o  the surface 

is  Poisson's r a t i o  

Equation (84) can be readi ly  integrated with respect t o  t h e  z 

coordinate by assuming t h a t  the s t r a ins  can be represented as 

follows : 

E = e  + z k  r r r 

= ee + z ke c8 

The quant i t ies  (erf ee, ere) a r e  the  middle surface s t r a ins  

while (Er,  E 

The quant i t ies  (kr, ke, kr8) a re  dis tor t ions of the  middle surface 

which a re  c losely related t o  the  changes i n  the shell curvature 

yre) a re  the  s t r a ins  at any point i n  the  she l l .  

caused by bending. 

The s t r a i n  energy expression (84) a f t e r  subst i tut ion of 

equation (85 )  and integration with respect t o  z can be represented 

as the sum of two terms, the  membrane energy U 

energy UB 

and the bending M 

u = u  +UB M 
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where : 

2fi r 

* + 2vk r e  k + '(l-v)kre2) 2 rdrde (88) 

1 0 r 

where : 

I 
Et' D =  

12 (1 -v"> 

The middle surface s t r a ins  and the  bending d is tor t ion  f o r  

axisymmetric nonlinear deformation of a shallow s h e l l  expressed i n  

terms of t he  middle surface displacements (u, w) are as follows 

(see page 149 of r e f .  41, f o r  example) 

w u  - - - - -  Re 

ere = 0 
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1 a; 
ke = - - -  r dr 

kre = 0 

where Rr and Re are t h e  pr inc ipa l  r a d i i  of curvature. me 

subst i tut ion of equations (90) and (91) i n to  equations (87) and (88) 

a.nd subsequent integrat ion with respect t o  8 gives t h e  following 

1 r 

It is  convenient t o  define t h e  following dimensionless variables 
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r 
P ='i; 

b w = -  
I- Rr 

b w = -  
Re 

W w =, 
2 

2 

(94) 

where : 

b is  the r ad ia l  distance measured perpendicular t o  t h e  

center l i n e  from t he  center l i n e  t o  t he  s h e l l  edge 

01, O2 are curvatures 

- 
2 is  a reference length 

"he subs t i tu t ion  of re la t ions  (94) in to  equation (92 )  and (93) 

leads t o  the  following expression f o r  t he  s t r a i n  poten t ia l :  
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where : 

2 2 = -  b 

2 

k = 12 E(:) 
0 

( ) t  indicates differentiation with respect to p .  

are reference bending stiffness and modulus of elasticity Do’ Eo 

Potential of Surface Forces 

The potential corresponding to the work of the conservative 

pressure distribution p normal to the surface of the shell is 

given by expression 

In nondimensional form equation (87) becomes 
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where 

and where 

4E t 
- 2 2  a m 

0 0  - 

The parameter p i s  the c l a s s i ca l  buckling pressure of a complete 

spherica.1 s h e l l  of the  same radius of curvature and thickness. 

c r  

Potent ia l  of t he  Edge Restraint  

A generalized poten t ia l  f o r  a rb i t r a ry  edge r e s t r a i n t s  

( l i nea r  springs) can be wri t ten i n  the  following f o m .  

where ql) 92' q3, and q4 a r e  appropriate constants (spring rates). 

After integrat ing and nondimensionalizing equation (98) can be 

wri t ten as follows: 
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where 

- 94b 94 = 2 
Do 

Total Potent ia l  Ehergy 

i s  the  sum of t he  s t r a i n  

poten t ia l ,  t he  poten t ia l  of external  forces ,  and the  poten t ia l  
nt The t o t a l  po ten t ia l  energy 

of t he  edge r e s t r a i n t .  

Thus : 

The subs t i tu t ion  of equations (B), (97),  and (99) in to  (100) 

leads t o  the  following expression f o r  i n  terms of t h e  

displacement variables:  
t 
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where t h e  subscript  b indicates  t h a t  t h e  displacement is  evaluated 

at  the  boundary p = 1. 

Numerical Approximation of Poten t ia l  Functions 

The methods of unconstrained function minimization which a r e  

presented i n  chapter V I 1  apply t o  functions of a f i n i t e  number of 

variables.  It i s  necessary therefore  t o  approximate t h e  

f’unctional equation (101) by a f i n i t e  number of unknowns. 

accomplished i n  the  present invest igat ion by approximating t h e  

continuous functions (u,w) and t h e  s h e l l  propert ies  of N d i scre te  

s ta t ions  along the  radius of t h e  she l l .  These d iscre te  s ta t ions  

a r e  shown i n  f igure  3 .  The i n t e rva l  between s ta t ions  A i s  taken 

t o  be a constant, and t h e  of f - she l l  s t a t ion  N+1 i s  added t o  

a l l o w  t h e  evaluation of derivatives a t  s t a t i o n  N. 

This i s  
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-- e 
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Location of difference approximation.- It w i l l  be shown by 

using a simple example t h a t  t he  pr incipal  e r ror  term i n  the  

numerical approximation of the  following in t eg ra l  

1 
f(w') =I w S 2 d x  

0 

i s  l e s s  f o r  a given increment s i z e  when the  f i r s t  der ivat ive i s  

evaluated midway between s ta t ions .  

Consider t he  following f ini te-difference approximations f o r  

t he  first der ivat ive at the  s t a t i o n  

sta, t ions i and i+l, respect ively 

i, and midway between the  

The er ror  i n  each of  t h e  approximations given by equations (103 ) 

and (104) can be estimated by appropriate Taylor s e r i e s  expansions. 

The r e su l t s  are as follows 

A2 1 9 1  w t  2: wi f wi i 
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where terms involving A t o  fourth degree and higher have been 

neglected. 

The pr incipal  e r ro r  term i n  the  numerical integrat ion of 

equation (102) f o r  each method of specifying t h e  derivative i s  

found by subst i tut ing the  appropriate r e l a t i o n  (105) o r  (106) in to  

equation (102). The pr incipal  e r ro r  term for each method, 

neglecting terms of A of higher than second degree, i s  a6 

follows 

0 

0 

It can be seen by conparing t h e  e r ro r  terms f o r  t h e  whole s t a t i o n  

and half-s ta t ion representations of t he  f irst  derivative t h a t  i n  

t h i s  example t h e  half-s ta t ion method r e su l t s  i n  a principa.1 e r ro r  

term which is approximately one-eighth of  t he  e r ro r  associated with 

the whole s t a t i o n  representation. 

By proceeding i n  a manner similar t o  t h a t  presented above, 

it can be shown t h a t  overal l  numerical e r ro r  involved i n  the  

combined f ini te-difference approximation and numerical integration 

i s  minimized i f  t he  following rules are obeyed. 
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a. Eh..luate even derivatives a t  the  s t a t ions .  

b. 

c.  

Evaluate the  odd derivatives midway between s ta t ions .  

E a term i n  t h e  in t eg ra l  involves t h e  product of an 

even and an odd derivative,  evaluate t h e  product at the  

locat ion which is  appropriate for t h e  highest order 

der ivat ive appearing i n  t h e  product. 

The numerical approximations of derivatives and function values 

which a re  appropriate f o r  a trapezoidal sum approximation of  t he  

in tegra l  a r e  as follows 

+ o[A2) 

+ O(A2) 

w I 1  z - 1 (wi+l - 2w. + wi 1) + 0(Ll2) 
1 A2 i 

The notation O(A2) 

2 proportional t o  A . 
indicates t h a t  t he  principa.1 e r ro r  term i s  

Comparison of gradient and numerical approximation of t h e  

Euler-Lagrange equation.- The gradient expression which i s  derived 

from the  numerical approximation of an in tegra l  should reduce t o  the  

appropriate mer-Lagrange equation as t h e  increment s i z e  i s  
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reduced t o  zero. The following example shows t h a t  the  use of  

trapezoidal summation t o  represent an in t eg ra l  together with the  

numerical approximations given by equation (109) and the  ru les  

governing the  locat ion at  which terms are evaluated leads t o  a 

gradient expression which reduces t o  t h e  mer-Lagrange equation.. 

Consider t he  functional 

1 
f (w,wt)  = J (w' + w'*)dp 

0 

subject t o  t he  condition t h a t  

w(0) = w 
0 

w(1) = w1 

The Euler-Lagrange equation i s  as follows 

By using trapezoidal integration, equation (110) ca.n be 

approximated by the  following summation 

N N -1 
2 

(112) 

where the  even derivatives are evaluated a t  t he  s ta t ions  and odd 

derivatives a r e  evaluated midway between s ta t ions .  The quant i t ies  
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a re  integrat ion fac tors  whose value depends on the  E and E 

locat ion along p .  These and Ei+1/2 are equal t o  A except 

that  

Equation (112) after the  subs t i tu t ion  of the appropriate expression 

from equations (109) becomes : 

i+1/2 i 

A 
El = EN-1 = 2 , EN = EN-1/2 = 0 .  

N -1 2 1 

A 

-1 
N 

2 
f ( w , w ' )  = 1 wi Ei f 1 2 (Wifl - Wi) Ei+1,2 

i=1 id 

The gradient of the function represented by equation (113) i s  as 

follows . 

(114) 

The numerical approximation of the Wer-Lagrange equation (111) 

is  as follows. 

1 
A 

- 2w. f wi+l) = 0 i - 2 (wi+l 1 
W 

Since the vanishing of the gradient components is  a necessary 

condition for a minimum it can readi ly  be seen that equations (114) 

and (115) a re  ident ica l .  

approximation of t h e  Euler-Lagrange reduces t o  the  Euler-Lagrange 

In addition, s ince t h e  f ini te-difference 
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equation as the increment A approaches zero it follows tha t  the  

gradient expression, equation (114) a l so  reduces t o  the Euler- 

Lagrange equation. 

Numerical approximation of shallow s h e l l  po ten t ia l . -  The 

numerical. approximation of t he  poten t ia l  function f o r  the shallow 

s h e l l  can be wri t ten as follows 

- - 
where 3 is t h e  port ion of ITt involving terms i n  (u,w) of 

second degree and lower. The 

degree a re  incorporated i n  k. For convenience r4, i s  ca l led  

the  "linear" poten t ia l  and -rJL 
since t h e  minimization of 

l i n e a r  s h e l l  behavior and the  inclusion of 

the  nonlinear effects .  

i n  (u,w) of greater  than second 
- - 

i s  ca l led  the "nonlinear" po ten t i a l  
- 

leads t o  the equations governing 
- 
rJL takes in to  account 

The introduction of trapezoidal summations t o  approximate 

de f in i t e  in tegra ls  and t h e  use of consistant numerical approximations 

for derivatives t o  give a minimum e r ro r  gives the  following 

expressions for and h. - - 
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- 2 -  2 + q w '  
+ 43"R 4 N  

In the  following t h e  re la t ions  (117) and (118) w i l l  be considered 

t o  be equal i t ies  ra ther  than approximations. 

Closure Conditions 

The expressions f o r  t h e  circumferential midplane s t r a i n  
E~ 

and the  midplane bending curvature ke equations (90 )  and (91) 
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respectively,  are seen t o  have a f i r s t -o rde r  pole at the center of 

the shell. In order f o r  the s t r a i n  and bending curvature 
- 

expressions t o  be f i n i t e  as r + O  it is necessary that  u and 

approach zero at t h e  same rate as r; thus,  at  r = 0 the 3% ar 
followin$ conditions must hold 

O r ,  i n  terms of the nondimensional var iables;  

u = o  

w' = 0 

The appropriate s t r a i n  and bending curvature expressions at the 

center of t h e  shell are as fol lows:  

Gradient Components 

The gradient components are found by d i f f e ren t i a t ing  the 

energy expression (116) with respect t o  the nodal displacements. 

Different ia t ion of equation (117) w i t h  respect t o  the  nodal 
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displacements ui, wi gives the  following gradients o f  t he  

l i nea r  po ten t ia l  
- z 

2 

(i = 1, 2, . . ., N+1) 
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(i = 1, 2, . . ., N+X) 

where Ei and Ei+1/2 are integrating f ac to r s  having values as 

fo l lows  : 
N+1/2 = O E 

E = A  i = 1, 2, . . ., N i+1/2 

E = A  i 

E = o  1 

i = 2, 3 ,  . . ., 3-1 

E = o  N-I-1 

A 
N 2 

- -  - E 
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and N i s  the  number of s ta t ions  on the  she l l .  An of f -she l l  ~ + 1  

s ta t ion  is  considered so  t h a t  the  derivative o f  (u,  w )  may be 

evaluated a t  t he  edge. The qua,ntity 6 i s  the kronecker 

de l t a  and i s  defined as follows: 
i j  

In  a similar manner contribution of the  nonlinear po ten t i a l  t o  

the  gradient components i s  as follows 
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where 

It is in te res t ing  t o  note t h e  following points  with regard t o  the 

deriva,tion of equations (120) through ( 1 2 3 ) .  

1. Only the  shell. closure conditions necessa ry to  insure f i n i t e  

s t r a i n  and bending d is tor t ion  are specified.  

t he  case where a comparable set of equations i s  derived by 

subst i tut ing f ini te-difference expressions i n  t h e  Ner-Lagrange 

equations. 

conditions necessary t o  guarantee t h a t  no concentrated forces ex i s t  

at  the  s h e l l  apex. 

t he  energy expression t h e  l a t t e r  conditions are automatically 

sa t i s f i ed .  

This i s  i n  contrast  t o  

In  t h e l a t t e r c a s e  it i s  also necessary t o  specify t h e  

In deriving t h e  s e t  of equations d i r e c t l y  from 

2. The s e t  of  equations represented by t h e  gradient 

components i s  symmetric as a consequence of t he  quadratic po ten t ia l  

function. This i s  i n  contrast  t o  t he  s e t  of f ini te-difference 

equations normally derived from t h e  Euler-Lagrange equations which 

a re  associated with the  poten t ia l  function (eq. (101)).  Symmetry 

conditions are useful i n  reducing the  number of numerical operations 
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necessary t o  determine a solut ion and i n  reducing storage 

requirements i n  the  computer core. 

3. There i s  some indicat ion the inherent d i scre t iza t ion  

e r ror  associated w i t h  t h e  s e t  of equations derived d i r ec t ly  from 

the  poten t ia l  i s  less than the corresponding error  i n  the  set 

derived from the  Ner-Lagrange equations. This conclusion i s  

drawn based on the  r e su l t s  presented by Cyrus (ref.  42) where t h e  

e r ror  involved i n  two f ini te-differences approximations w a s  

studied. It was  shown tha t ,  i n  general, t h e  system corresponding 

t o  the  s e t  derived d i r e c t l y  from t h e  energy expression has l e s s  

e r ror ,  on the  average, than the s e t  obtained by approximating t h e  

Euler-Lagrange equations. 

Second Derivative of t he  Poten t ia l  Function 

The second derivatives of the  poten t ia l  function which a r e  

required i n  the  Newton-Raphson procedure are given by the  following 

expressions. 

+ -i + di+l A 

- 
+ + 
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a ' q  
L 

1 
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where 

E. = k . p . E  i i i  
1 

- 
a . =  a p e  
1 i i i  

Similary, f o r  second derivatives of t he  nonlinear po ten t ia l  

- 
IT a re  as follows: 

NL 
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J 

L 

1 

c 137) 



- a1 - 

L 

L J 

where 



- 82 - 

IX. EVALUATION OF U N C O N S T R A m  MINIMIZATION TECHNIQUES 

Before discussing the  r e su l t s  f o r  t h e  nonlinear shallow she l l ,  

which a re  presented i n  chapter X , i t  is  appropriate t o  summarize and 

evaluate the  algorithms presented i n  chapter VII. 

Minimization of a Quadratic Object Function 

The conjugate gradient method as presented by Hestenes ( r e f .  29) 

and Beckman ( r e f .  30)  i s  i n  theory an elegant algorithm for finding 

the  solut ion of a l i n e a r  s e t  of equations, or equivalently of finding 

the  minimum of a quadratic function. The method i s  advertised t o  

be quadratically convergent so  t h a t  f o r  a flulction of n-unknowns, 

the solution, o r  minimum, is  located i n  a t  most n-steps neglecting 

round-off error .  

A computer program applying t h e  conjugate gradient method f o r  

finding the  solut ion of a l i n e a r  set  of equations w a s  wr i t ten  using 

s ingle  precision f loa t ing  point ari thmetic.  

associated with the l i n e a r  bending of a c i rcu lar  p l a t e  was then 

solved using 10 equally spaced increments along the  meridian on 

a computer which uses 8 equally s ign i f icant  f igures  i n  numerical- 

calculations.  The i t e r a t ion  process converged; however, on the  order 

o f  400 i te ra t ions  were required f o r  a problem involving only 22 

unknowns indicating t h a t  round-off errors  were prominent. In  

order t o  reduce the  effect  of round-off e r ro r  t he  program w a s  

modified t o  use double precision ari thmetic (16 s igni f icant  f i gu res ) .  

The s e t  of equations 
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The double precision program converged i n  approximately 40 i t e r a t ions  

indicating t h a t  round-off error was s t i l l  dominant. The conclusion 

w a s  reached t h a t  i n  s p i t e  of t he  at t ract iveness  of using the  

conjugate gradient method f o r  t h e  solut ion of l i nea r  problems, the  

round-off e r ror  and the  necessi ty  of using double precision 

ari thmetic make the  method noncompetitive with a standard matrix 

inversion subroutine such as Jordan's method. 

White ( r e f .  43) investigated several  solut ion techniques i n  

order t o  determine, a t  l e a s t  qua l i ta t ive ly ,  t he  best  d i g i t a l  

computer solut ion method f o r  t h e  f ini te-difference equations. Four 

methods were considered; conjugate gradients,  Gauss-Seidel i t e r a t ion ,  

accelerated Gauss-Seidel i terat ion,and Gaussian elimination. White 

reached the  same conclusions with regard t o  conjugate gradient 

methods as  a re  reached i n  the  present investigation. It is  

in te res t ing  t o  note t h a t  White found t h a t ,  f o r  t h e  c lass  of problems 

considered, Gaussian elimination gives t h e  best  solut ion and uses 

the  l e a s t  computer time. This same conclusion w a s  reached by 

Beckman, who points out t h a t  experience i n  applying t h e  conjugate 

gradient method t o  some l a rge  l i n e a r  systems indicates  t h a t  t he  

method compares unfavorably with Gaussian elimination. Beckman 

fur ther  points out t h a t  "the elimination method can be applied 

using double precision ari thmetic t o  a l i n e a r  system with few zero 

coeff ic ients  without involving more elementary ari thmetic ( s ing le  

precision) operations than the  conjugate gradient method. " In  view 
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of t he  experience of the several  inves t iga tors , i t  appears t h a t  t he  

conjugate gradient method should not be used t o  solve a s e t  of 

l i nea r  equations. 

The var iable  metric method wits a lso  programed t o  f ind  t h e  

solution of a l i n e a r  set of equations using s ingle  precis ion 

arthmetic operations. The method converges i n  the  theore t ica l  

n-cycles, without apparent round-off error .  However, s ince t h e  

standard l i b r a r y  program f o r  matrix inversion gives results which 

are as accurate as the var iable  metric method i n  what appears t o  

be l e s s  computer time, t h e  standard Langley Computer Library 

subroutine for matrix inversion has been used i n  the present 

investigation, and appears t o  be very e f f i c i en t  f o r  t he  number of  

variables considered. 

It would appear t h a t  f o r  a l a rge  set of f ini te-difference 

equations that some form of Gaussian elimination which takes 

advantage of  t he  banded matrix would be appropriate. 

because t h e  number of unknowns i n  t h e  present invest igat ion is  not 

la rge ,  a general computer program f o r  solving the l i n e a r  set of 

equations using Gaussian elimination has not been prepared. 

However, 

Minimization of Nonquadratic Function 

Three methods are presented i n  chapter V I 1  which have been 

used by various invest igators  t o  minimize nonquadratic object 

M c t i o n s .  It has already been s t a t ed  previously t h a t  t h e  conjugate 

gradient method suf fers  from round-off e r ro r  when applied t o  the 



minimization of a quadratic function. Thus, while the  algorithm of 

conjugate gradients m i g h t  be expected t o  be more e f f i c i en t  than the  

method of steepest  descent, it would not be expected t o  converge 

as well as theory might indicate.  The method employing the  variable 

metric on the  other hand could be expected t o  loca te  the minimum i n  

a much more e f f ic ien t  manner than the  conjugate gradient method 

because round-off errors  a re  not s ignif icant .  

Each of these methods has been applied t o  the  problem o f loca t ing  

the unconstrained minirmun of the  function 

f(Xl,X2) = 100 (2 x -x $ + p-.,,’ 
s t a r t i ng  from the  point (xl,x2) = (-1.2, 1.0) (see r e f .  31 and 34)- 

The resu l t s  tend t o  ver i fy  the  general conclusions drawn above. The 

minimum, which is  located at  x x = (1,l) i s  found i n  18 1’ 2 
i t e ra t ions  by the  variable metric method and i n  27 i t e ra t ions  by 

the  conjugate gradient method. 

-8 associated with each method i s  10 . It is in te res t ing  t o  note t h a t  

the steepest  descent method has only reduced the  function value Prom 

24.200 t o  2.18 i n  27 i t e ra t ions ,  indicating t h a t  while the  variable 

metric technique is  the  more powerful method, the method of 

conjugate gradient w i t h  round-off error  i s  superior t o  the  method 

of steepest  descent. 

The value of t he  function 

The variable metric method was evaluated f i r t h e r  by Fletcher 

and Powell t o  determine if the  variable metric method is su i tab le  
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f o r  finding the  minimum of a function of a large number of variables.  

Nonlinear functions of up t o  100 variables were considered 

extremely good r e su l t s .  

s t a r t i ng  point and f o r  the case of 100 unknowns a solut ion of a set 

of nonlinear equations was found i n  162 i t e r a t ions  which required 

318 f'unction evaluations. 

search was used. 

minimization of sample functions i n  t h e  course of t'ne present 

investigation and t h e  same fast convergence has been found, and 

confirms t h e  following statement by Fletcher and Powell "the method 

(var iable  metric) i s  probably the most powerful general procedure 

f o r  f inding a l o c a l  minimum which is  h o r n  a t  the present time." 

A s e t  of random numbers was chosen as Itbe 

Cubic in te rpre ta t ion  i n  t h e  one-dimeiisional 

The var iable  metric method has been applied t o  the  

While the variable metric method is  a very powerful minimization 

technique, t he  necessi ty  of s tor ing and manipulating a square IILztrIx 

of order n i n  the  course of the minimization process 

unacceptable f o r  t he  c lass  of problems that i s  contemplated. Thus 

a t ten t ion  was focused on the  conjugate gradient and Newton-Raphson 

techniques. 

Early invest igat ion of the conjugate gradient technique 

indicated tha t  an unacceptably la rge  number of i t e r a t ions  would be 

required t o  loca te  the  unconstrained minimum of the shallow she l l  

po ten t ia l  function. In t h e  present investigation the notion of 

res ta r t ing  the  process from a steepest  descent every (n+l) 

i t e r a t ion  as recomended by Fletcher and Reeves was adopted 

without success. The d i f f i c u l t y  i s  t h a t  t he  process should be 
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allowed t o  continue f o r  t h e  number of i t e r a t ions  that  would be 

required t o  loca te  the  minimum of a quadratic function. However, 

because of round-off e r r o r  i n  t h e  calculations t h i s  number w a s  not 

known a p r io r i .  During t h e  course of investigating various techniques 

f o r  speeding convergence, t he  minimization process w a s  found to be 

s igni f icant ly  improved if the one-dimensional search interpolat ion 

procedure w a s  repeated u n t i l  t h e  angle between p and gi 

within 0.001 radians of the theo re t i ca l  

a 
i 

1r/2 radians, o r  u n t i l  no 

improvement could be made. It w a s  found, i n  general, tha t  no 

s ignif  ica.nt improvement wa.s ma.de a f t e r  t h e  second interpolation. 

The algorithm which w a s  f i n a l l y  chosen f o r  locat ing the  

minimum of t he  object m c t i o n  of t h e  shallow s h e l l  was  a hybrid. 

It combined the Newton-Raphson method as described i n  chapter V I 1  

and the conjugate gradient method. This combination was  chosen f o r  

t he  following reasons: 

1. The matrix a2f i s  symmetric and has a narrow band x x  
1 J  

a of  nonzero terms. The e r ro r  vector e equation (68) can thus 
j 

be found accurately and quickly by using a Gaussian elimination 

technique. Only the nonzero terms need t o  be stored i n  t h e  

computer. 

2. The Newton-Raphson method converges quickly f o r  those cases 

where t h e  necessary conditions f o r  a contraction mapping a re  

sa t i s f i ed .  

s a t i s f i ed .  

For a contraction mapping the inequal i ty  (71) must be 
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3. For those cases where t h e  inequal i ty  (71) i s  not s a t i s f i ed ,  

t he  conjugate gradient technique is  an acceptable method for moving 

from t h e  current point t o  another point where t h e  inequal i ty  w i l l  

be sa t i s i f ed .  The conjugate gradient procedure i s  acceptable 

because a r e l a t ive ly  few i t e r a t ions  a r e  usually required i n  

pract ice  and t h e  algorithm u t i l i z e d  a minimum of avai lable  core 

storage. 
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X. DISCUSSION OF RESULTS FOR SHALLOW SHELL 

Description of Program Logic 

During the  evaluation phase of t h i s  invest igat ion a cornbina-Lion 

of t he  Newton-Raphson procedure and the  conjugate gradient method 

w a s  found t o  be w e l l  su i ted  t o  t h e  solut ion of nonlinear equations. 

The d e t a i l s  of how this  minimization procedure was u t i l i z e d  i n  

obtaining the buckling loads and deflections f o r  shallow she l l s  of 

revolution is  described i n  t h i s  section. 

The load-deflection curve f o r  a uniformly loaded shallow s h e l l  

having clamped edges has t h e  general form shown i n  f igure  4. 

Thurston (ref.  22) ,  f o r  instance.)  
2 2  

increase monotonically f o r  p. C 11, where p = - at ’ 
m = 12 ( l -v2)  and other  quant i t ies  have been previously defined. 

For 

L i n  f igure  4. 

procedure converges strongly when t h e  l i n e a r  solut ion i s  used as the 

i n i t i a l  s t a t e  point.  For loads greater  than that associated w i t h  

the  horizontal  tangent U the Newton-Raphson procedure did not 

converge when the most recent converged state point o r  the l i n e a r  

solution is used as an i n i t i a l  state. 

(See 

The def lect ion i s  found t o  

2 2 m b  

4 

p2 > ll t h e  curve has two horizontal  tangents labeled U and 

In  the prebuckled range, OU, the Newton-Raphson 

In order t o  determine a solut ion i n  t h e  post buckled range 

a very crude i n i t i a l  estimate of the postbuckled def lect ion shatpe 

w a s  made by assuming tha t  t h e  center def lect ion i s  -2H, t h e  edge 

deflection is zero, and that t h e  def lect ion var ies  l i n e a r l y  
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between these extremes. It is  unusual i f  t h e  Newton-Raphson 

procedure converges when t h i s  i n i t i a l  estimate i s  used. If t h e  

Newton-Raphson procedure does not converge, the po ten t i a l  is 

minimized using t h e  conjugate gradient procedure s t a r t i n g  from the  

crude estFmate of t h e  post buckled shape. The Newton-Raphson 

procedure is per iodica l ly  applied using the then current state point 

t o  determine if t h e  Newton-Raphson procedure w i l l  converge. 

Ecperience has shown t h a t  a very f e w  cycles (on t h e  order of 

l e s s  when n is t h e  number of unknowns) i s  su f f i c i en t  t o  reach a 

s t a t e  point from which t h e  Newton-Raphson procedure w i l l  converge. 

Once a solution i n  t h e  post buckled range is  found t h e  curve NL 

can be defined by incrementing t h e  load, where t h e  i n i t i a l  s t a t e  

associated w i t h  each load is  taken t o  be the last converged r e s u l t .  

3n or 

The curve UL represents unstable equilibrium conditions f o r  

t he  shallow she l l .  These s t a t e s  have not been determined i n  th.e 

present invest igat ion because they a r e  only of academic in t e re s t  

and a r e  not generally rea l izable  and t h e  expense of  computational 

e f fo r t  necessary t o  determine these states does not appear warranted. 

Two convergence tests are made i n  the Newton-Raphson procedure. 

In order  The first determines that the function i s  being minimized. 

that the minimization process be taking place it i s  necessary tha t  

fa+l < fa  

where fa  i s  t h e  value of t h e  poten t ia l  after the  am applicat ion 

of t he  Newton-Raphson procedure. 
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If the  inequal i ty  represented by equation (142) i s  s a t i s f i e d  

a, t h e n t h e  error vector e; (see equation (68)) i s  compared t o  t he  
J 

, i s  less than 6 a. a 
j ’  

vector x . If the  norm of e 
j 

where €5 i s  a preassigned small number, then the  estimate of t he  

location of t he  minimum 

is  accepted a.s t he  converged value. In t h e  present invest igat ion 6 

i s  taken as 0.01. 

If the  inequal i ty  (142) i s  not satisfied, then t h e  load  

increment i s  reduced and the  Newton-Raphson procedure i s  again 

applied. If two successive reductions of t he  load  increment do not 

lead t o  convergence i n  the  sense of r e l a t ion  (142) then it is  

assumed t h a t  t he  load associated with t h e  last  converged r e s u l t  i s  

the  buckling load. I n  the  present invest igat ion t h e  new load  

increment i s  taken as 1/5 of the  current load increment so t h a t  

the buckling load  i s  found t o  within 0.025 6 where E i s  the  

magnitude of t he  load increment. When the  Newton-Raphson procedure 

i s  r e i n i t i a t e d  a f t e r  reducing the  load increment, t h e  las t  converged 

solution i s  used as an i n i t i a l  approximation of t h e  locat ion of 

the  minimum. 

The computer program which implements t h e  logic  described 

above and which incorporates t he  po ten t i a l  and gradients f o r  t he  

shallow s h e l l  is  presented i n  the  appendix. 
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Numerical Results 

Huang ( r e f .  6) has shown t h a t  asymmetric behavior governs the  

buckling of  a uniformly loaded spherical  cap f o r  

present invest igat ion is therefore  r e s t r i c t e d  t o  the  study of she l l s  

w i t h  p 2 6 s ince axisymmetric results f o r  p > 6 have l i t t l e  

p rac t i ca l  value. 

p > 6. The 

The investigations of t h e  nonlinear behavior of uniformly 

loaded spherical  caps which have been presented i n  the  l i t e r a t u r e  

have considered she l l s  with e i the r  fully clamped o r  completely 

unrestrained edges. 

an investigation of t h e  influence of a r b i t r a r y  edge conditions on 

the  buckling load t o  be carr ied out. These r e su l t s  were obtained 

f o r  a var ia t ion i n  meridional r e s t r a i n t  as well  as ro ta t iona l  

r e s t r a in t .  

Results were obtained i n  t h i s  study which allow 

Effect of meridional edge r e s t r a i n t . -  Calculations were made 

t o  determine t h e  influence of meridional r e s t r a i n t  on t h e  buckling 

behavior of sha l low spherical  shells. P lo ts  of the buckling load  
- 

f o r  various values of t h e  inplane r e s t r a i n t  parameter 

a r e  shown i n  figures 5 ,  6, and 7 f o r  geometric parameters 

p = 4, 5 ,  and 6,respectively.  The calculations were c 

f o r  a shallow spherical  cap with t h e  edge f u l l y  res t ra ined against 

r o t a t  ion 4 = 1  and no cross-coupling between normal and 

meridional displacements a t  t h e  edge = and with v = 0.1, 

b / t  = 100. 

2 
( 

The p lo t s  show t h a t  t he  buckling load i s  essent ia l ly  

independent of t he  inplane r e s t r a i n t  f o r  (?1 < lo3 and { > 1-0 7 . 
1 
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Between these extremes the buckling load increases monotonically 

with an increase i n  in-plane r e s t r a i n t .  

The f a c t  tha t  t h e  buckling load increases w i t h  increasing 

meridional r e s t r a i n t  as indicated by f igures  5 ,  6, and 7 i s  not 

unexpected. 

of the membrane forces.  

membrane forces i s  g rea t ly  influenced by t h e  degree of meridioinal 

The buckling phenomenon is  preceded by a build-up 

For shallow shells the magnitude of t he  

r e s t r a in t .  

It i s  

edge which 

meridional 

b / t  = 100, 

of i n t e re s t  t o  note the s i z e  of a c i r cu la r  r ing at -the 

would be required t o  approximate a r i g i d  r e s t r a i n t  t o  

displacement. By assuming that  = 10 v = 0.1, 

and t h a t  t h e  r ing and s h e l l  a r e  made from t h e  same 

7 2  
1 

material  it i s  found that the  r ing  radius required i s  approxirmtely 

5 O t ,  where t i s  the  thickness of t h e  she l l .  

Effect of ro ta t iona l  edge r e s t r a i n t . -  Calculations were made 

t o  determine t h e  influence of ro t a t iona l  r e s t r a i n t  on the  buckling 

behavior of shallow spherical  shells. 

P f o r  various values of t h e  ro t a t iona l  r e s t r a i n t  parameter 

a re  shown i n  figures 8, 9, and 10 f o r  geometric parameters 

Plots  of t h e  buckling load  

4 
- 

c r  

p = 4, 5 ,  and 6, respectively.  The calculations were car r ied  out 

f o r  a shallow spherical  cap w i t h  t h e  meridional edge displacement 

m l y  restrained , no cross-coupling between normal and 

2 meridional edge displacements and w i t h  v = 0.1, 

b / t  = 100. The p lo t s  show tha t  the buckling load i s  e s sen t i a l ly  

independent of t he  ro ta t iona l  r e s t r a i n t  f o r  c4 < 0.01 and 



- 98 - 

r i  

0 

3 

i-i 
'0 
PI 

I 

k 
0 
k 

3 
I O +  

k 

k 
0 

$2 
0 

cd 

cd 
rn 

Y 
64 

ln 
0 
ri 

CI 

0 
I I  

h 

r- 
0 
ri 

I1  

.P 
\ 
P 

CI 



- 99 - 

M 
0 
rl 

a 
0 
f-4 

OO 
f-4 

f-4 
IO 
r-! 

Fi 
a, 
-P 

3 
k 
cd 
Pi 

k 
0 
41 



- 100 - 

? E- 

m 
0 
rl 

cu 
0 
rl 

rl 
0 
rl 

0 
0 
rl 

d 
'0 
rl 

k 
a, 
% 
8 
k 
cd 
pc 

k 
0 

F-r 

k I dd 
0 

I 

0 
ri 
a, 
k 

.d 
rM 
i.4 



- 101 - 

i4 > lo3. Between these extremes t h e  character of t h e  var ia t ion of 

buckling load with a change i n  t h e  ro ta t iona l  r e s t r a i n t  parameter 

i s  dependent on the  value of t h e  geometric parameter i.1. 

Figures 8, 9 ,  10 show two phenomena which a r e  of i n t e re s t .  
- 

F i r s t ,  t h a t  f o r  p = 5 and 6 a peak i n  t h e  Pcr curve occurs 

between the  extremes of clamped c4 > 10’) and simply supported ( 
< 0.01 edge conditions. Second, t h a t  f o r  p = 4 and 5 t h e  

buckling load f o r  t h e  simply supported edge condition i s  greater  

then the  buckling load f o r  t h e  clamped edge condition. While t h i s  

behavior is  unexpected it i s  believed t h a t  both e f f ec t s  can be 

explained t o  some degree by considering the  n o m 1  deflect ion mode 

shapes. 

several  combinations of t h e  parameters. The r e su l t s  a r e  shown i n  

f igures  ll, 12, and 13 f o r  geometric parameters I.I = 4, 5 ,  and 6, 

respectively.  The buckling modes f o r  values of t he  ro ta t iona l  

r e s t r a i n t  parameter associated with the  simply supported and 

4 1 

The mode shapes jus t  p r i o r  t o  buckling were calculated. for 

clamped edge conditions are presented f o r  

addition, t he  modes associated with values of t he  ro ta t iona l  

r e s t r a in t  parameter j u s t  p r i o r  t o  and j u s t  a f t e r  t he  peak i n  

a re  presented f o r  

p = 4, 5 ,  and 6. In 

-_ 
Per 

1-1 = 5 and 6. 

It i s  seen t h a t  t he  character of t h e  simply supported 

buckling mode changes between p = 4 a.Ed p = 5 and t h a t  t h e  

character of t h e  clamped buckling mode changes between 

and p = 6. 

p = 5 
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In  both cases t h e  buckling mode changes from a mode characterized 

by one wave t o  a mode characterized by two waves. These changes 

i n  mode shape can be correlated with abrupt changes i n  the  slope 

of t he  p lo t s  of buckling load versus s h e l l  parameter which are 

presented i n  f igure  14  f o r  simply supported and clamped edges. 

calculations which are presented i n  f igure  14  were car r ied  out f o r  

shallow spherical  she l l s  with f u l l y  res t ra ined meridional edge 

displacements (il = lo7), no cross-coupling between 

"b (% 
taken t o  approximate completely rest rained rotat ion,  and 

f o r  t h e  simply supported edge. Abrupt changes i n  slopes of t he  

buckling load curves occur at  p = 4.2 and p = 5.8 for t h e  

clamped and simply supported edges, respectively.  

The geometric parameters at  which t h e  cha.nges i n  slope o f  t h e  

The 

"b and 

= 0) and with v2 = 0.1, b / t  = 100. Also i4 = 12 w a s  
- 
q4 = 0 

buckling load curves occur f o r  t h e  clanpea and t h e  simply supported 

edge can be correlated by considering t h e  clamped buckling mode. 

Consider f o r  example t h e  buckling mode f o r  t h e  clamped edge with 

p = 6 ( f ig .  12). 

approximately r = 0.n. Since wl' is  zero at  the  inf lec t ion  

point it follows t h a t  t he  moment a l so  vanishes. This point  

therefore represents t h e  edge of a s h e l l  which can be considered 

as having approximately simply supported edges although these 

conditions do not exactly correspond t o  those used i n  calculat ing 

the  simply supported r e su l t s  presented i n  figure 14. Since p. i s  

proportional t o  the  outer radius it f o l l o w s  t h a t  the  clamped s h e l l  

A point of in f lec t ion  occurs a t  a radius of  
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with 

supported s h e l l  with 

clamped edge f o r  

the  simply supported s h e l l  f o r  

i s  independent of b so  t h a t  if the  boundary conditions a t  t he  

inf lec t ion  point were the  same as those used i n  calculat ing t h e  

r e su l t s  shown i n  figure 1 4  f o r  t h e  simply supported s h e l l ,  t h e  

corresponding buckling loads would be t h e  same. 

p = 6 has some charac te r i s t ics  i n  common with a simple 

p = 4.2. In  fac t , the  mode shape f o r  t he  

5.8 < p < 8 corresponds t o  the  mode shape f o r  

4.2 < p < 7.5. The buckling load 

The f a c t  t h a t  t h e  buckling load f o r  t he  simply supported s h e l l  

i s  greater  than t h e  buckling load f o r  a clamped s h e l l  with the 

same p i s  explainable s ince t h e  buckling load f o r  t h e  simply 

supported s h e l l  can be correlated with the  buckling load of an 

equivalent clamped s h e l l  of higher p.  Other invest igators  have 

noted t h a t  t he  spherical  s h e l l  with a simply supported edge has a 

higher buckling load than t h e  same s h e l l  with a clamped edge (see 

Evansen and Fulton (ref.  45), f o r  example). The increase i n  

buckling load w a s  a t t r i bu ted  t o  dynamic e f f ec t s  by these authors 

whereas t h e  r e su l t s  of t h e  present invest igat ion show t h a t  t h e  

increase i s  due t o  the  s h e l l  configuration. 

The explanation f o r  t he  peak i n  the  var ia t ion  i n  buckling 

load with rota,t ional r e s t r a i n t  i s  not qui te  s o  apparent. It does 

appear, however, t h a t  t he  r e su l t s  are not unreasonable i n  view of 

t h e  var ia t ion of buckling load with 

f ac t  t h a t  f o r  any value of 

supported she l l .  The very sharp peak shown i n  f igure  9 f o r  p = 5 is  

p shown i n  figure 1 4  and the  

i4 there  i s  an equivalent simply 
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evidently re la ted  t o  t h e  f a c t  t h a t  t h e  mode shape f o r  t he  simply 

supported s h e l l  associated with the  clamped edge has one wave whereas 

the  mode shape f o r  t he  simply supported edge has two waves. 

It i s  of i n t e re s t  t o  note the  s i z e  of a c i rcu lar  r ing  a t  the  

edge which would be required t o  approximate a r i g i d  ro ta t iona l  

r e s t r a in t  (ih > lo3). A r ing radius of approximately 10 t  i s  

found adequate f o r  It i s  a l s o  

assumed t h a t  the  r ing and s h e l l  a r e  made from t h e  same material 

3 2  <4 = 10 , v = 0.1, b / t  = 100. 

and tha t  t he  s h e l l  radius b i s  10 times the  radius of the  ring. 

It w a s  found previously t h a t  a r ing  radius of approximately 50% 

i s  required t o  simulate a r i g i d  r e s t r a i n t  t o  meridional displacement. 

It would thus appear t h a t  i n  designing a supporting r ing  t o  

simulate clamped edge conditions t h e  meridional r e s t r a i n t  i s  t h e  

controll ing fac tor .  

Correlation of  results w i t h  other invest igators . -  The v a r i  

of t he  buckling load with shell parameter f o r  a clamped edge can be 

compared t o  r e su l t s  which have been presented by other  invest igators  

(see Thurston, r e f .  22, for example). 

determined by the  present invest igat ion are seen t o  be i n  good 

The buckling loads as 
d 

agreement with the  buckling loads presented by Thurston, which a re  

indicated by the  so l id  symbols i n  figure 14. The s l i g h t  differences 

i n  the buckling loads predicted by the  present invest igat ion and 

by Thurston may be due t o  t h e  limited number of increments used i n  

the  present invest igat ion (10) compared t o  the  number used by 

Thurston (18). Another possible cause is  the  d i f fe ren t  
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discre t iza t ion  e r ro r  i n  each analysis.  

evaluates first derivatives midway between s ta t ions  while Thurston 

evaluates these derivatives a t  t h e  s t a t ion .  The generally good 

agreement between t h e  buckling loads as determined by the d i r ec t  

and the  ind i rec t  methods of analysis  indicates  t h a t  t he  d i r ec t  

method as presented i n  t h i s  invest igat ion i s  a val id  and accurate 

numerical technique f o r  solving problems i n  t h e  f i e l d  of continuum 

mechanics. 

The present analysis 

E l l i p t i c  shallow she l l . -  The ef fec ts  of changes i n  shallow 

she l l  geometry on the  buckling load a r e  determined by considering a 

shal low e l l i p t i c  s h e l l  of revolution. The shallow e l l i p t i c a l  ishell 

i s  formed by revolving the curve 

2 

about t he  z-ax is  and taking that pa r t  of the surface 

The coordinate system i s  as shown i n  f igure  15. 

0 5 r 5 b. 

Equation (144) can be wri t ten i n  t h e  following form 

where 
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TABLE I 

EFFECT OF CHANGE I N  SHE& GEOMFTRY ON BUCKLING LOAD 
DEFLECTION FOR A UNIFORMLY LOADED C W E D  SHALLOW SHELL 

2 W I T H  b/t = 100, v = 0.1 

Spherical 
shell 

parameter 

0.5 

1 

-5  

1 

2 

-5 

1 

2 

W 
0 - 
t 

- 0.9745 
- -9271 

- -9283 

- .8198 

- .a274 

- -8348 

- -5252 

- 
cr P 
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The principal. curvatures a a r e  given by t h e  following 1' 2 

C D -  
2 -  

1 

(147) 

A t  p = 0 t h e  curvatures are taken t o  be equal t o  Wo. It f o l l  

t h a t  may be expressed i n  terms of 7 and Wo as follows 

The ef fec t  of changes from a nominal spherical  s h e l l  shape on 

the  buckling load is  found by specifying 0 a s  t he  curvature f o r  

and a spherical  cap and varying q .  The center def lect ion - 
t he  buckling l o a d  Pcr f o r  various e l l i p t i c a l  caps with nominal 

spherical  geometric parameters 

t ab le  I. 

0 W 
0 

t - 

p = 4, 5 ,  and 6 a r e  given i n  

The r e su l t s  presented i n  t a b l e  I indicate  t h a t  f o r  t h e  range 

of parameters considered there  is essent ia l ly  no change i n  the  

center def lect ion or t h e  buckling load f o r  a given value of t he  
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spherical  s h e l l  parameter p when 7 i s  varied between 0.5 and 2 .  

The maximum change of center def lect ion i s  approximately 5 

percent f o r  IJ- = 4. 

less than one-hdf of 1 percent. 

The maximum change i n  the  buckling load i s  
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XI. CONCLUDING REMARICS 

Mathematical programing techniques f o r  minimizing functions 

of many variables are e v a l u t e d  i n  order t o  determine which methods 

a re  appropriate i n  the f i e l d  of continuum mechanics. 

which are found t o  be most appropriate are applied t o  determine t h e  

nonlinear displacements of shallow shells of revolution. 

The methods 

The mathematical programing techniques considered i n  the 

invest igat ion were the s teepest  descent, the conjugate gradient,  

t h e  var iable  metric, and t h e  Newton-Raphson method. O f  the  methods 

considered it w a s  found that a combination of t h e  Newton-Raphson 

and the  conjugate gradient methods was bes t  su i ted  t o  the  numerical 

solut ion of nonlinear problems i n  continuum mechanics. The Newton- 

Raphson procedure i s  generally used. t o  f ind  a minimum of t he  object 

function. The conjugate gradient method w a s  used t o  determine 

an in i t i a l .  approximation su f f i c i en t ly  close t o  t h e  locat ion of 

t he  minimum such t h a t  t he  Newton-Raphson procedure would converge. 

The combined algorithm w a s  applied t o  determine t h e  la rge  

def lect ion behavior of a symmetric shallow s h e l l  loaded uniformly 

and having a rb i t r a ry  edge r e s t r a in t s .  

investigation w a s  to obtain t h e  displacements by a d i r ec t  

minimization of t he  f ini te-difference approximation of t h e  poten t ia l  

energy of the shel l .  The resu l t ing  displacement s e t  defines an 

equilibrium configuration of the  s h e l l  as a consequence of the 

Theorem of Minimum Potent ia l .  

The approach used i n  t h i s  

The set  of equations which defines 
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the gradient has the advantage tha t  the elements a re  symmetric 

and a l s o  may be more accurate then the  f in i te -d i f fe rence  

approximations of  the  equilibrium equations. 

The e f fec t  of boundary r e s t r a in t  on the  buckling of a shallow 

spherical s h e l l  was investigated. It was found that i n  the  r a g e  

3.5 < p < 5.6 

load than a clamped s h e l l  with the  same value of 

f o r  > 5 it was found that p a r t i a l  r e s t r a in t  of edge rotat ion 

can lead t o  higher buckling loads than r e su l t s  from no r e s t r a in t  

(simply supported) o r  ~y restrained (clamped). 

the  simply supported shell has a higher buckling 

p.  In addition, 

The e f fec t  of changes i n  shallow s h e l l  geometry on the  

buckling load was investigated by considering a portion of a 

shallow e l l i p se  of revolution. For the  range of parameters 

considered,it was found t h a t  the  buckling load and center deflection 

were essent ia l ly  unchanged when the  r a t i o  of e l l i p se  major radii 

was varied from 0.5 t o  2. For a given value of IJ. the  maximum 

change i n  the  buckling load was  l e s s  then one-half of 1 percent 

and the maximum change i n  center deflection w a s  approximately 

5 percent. 
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xv. AFPENDM 

COMPUTER PROGRAM FOR DlRECT DETEBMINATION OF NOmLINEAIp 

DISPLAC-S AND BUCKLING LOADS FOR AXISYMME?TRICALLY 

LOADED SHELLS OF REVOLUTION 

A computer program which lninimizes the f ini te-difference 

approximation of t h e  s h e l l  po ten t ia l  energy (eq. (116)) is 

described. This program is wri t ten in  FORTRAM IV symbolic 

language f o r  operation on t h e  IBSYS-IBJOB operating system 

(version 13 ) . 

Input Data 

The following input data cards are required f o r  each separate 

problem. 

Card number 1 

Card number 2 

The description o f  problem, columns 1-80. 

Card number 2 i s  a card o r  group of cards 

necessary to read a group cal led NAMl, 

using t h e  NAMELIST input option. 

data are as follows. 

These 

ANLT Poissons r a t i o  

SF Scale factor ,  2 

I n i t i a l  load, 'f; 

A=)@) Load increment, E 

A=)(3 1 Maximum load 

B B C ( ~ )  Membrane s t i f fnes s ,  k 
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DDC(~) Bending stiffness, d 

oxc(2) Ratio of principal radii of ellipse, q 

Problem number 

Number of increments along radius (maximum of 10) 

Convergence criterion for angle between u-61 and i g 
a 

pi in one-dimensional search (see eq. (73) 

The number of cycles taken in the conjugate gradient 

search before checking to determine if the Newton- 

Raphson procedure converges is NNL times n where 

n is the number of variables. Recommended 

number is NNL = 3 .  

Conjugate gradient convergence criterion 

-7 Recommended value ERR = 5 x 10 

Estimated value of minimum of function 

Controls print frequency in conjugate gradient 

search. Recommended value, I€!E' = n. 

Spherical shell parameter p 

Load parameter set FN(1) = - 1 
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MIF1 Normal setting is zero. If MIFl = 1 an i n i t i a l  

displacement state is  t o  be read i n  on t h e  next 

set of data  cards 

NRExo Normal s e t t i ng  is  zero. If NREAD > 0 the  Newton- 

Raphson procedure is bypassed, an i n i t i a l  state 

vector i s  read and the conjugate gradient method 

is  i n i t i a t e d  

PIFl Intermediate p r i n t  control.  Normal s e t t i n g  

DecFl = 0 .  For debugging purposes set  PIFl = 1 

Card number 3 Necessary o n l y  i f  MIFl = 1 o r  NRExo > 0 .  

hitid displacement set =(I) ( I  = 1, n)  

read i n  by NAMELIST f i l e  cal led NM2. 

Program Output 

The normal output consists of the following 

(1) 

(2) Linear solut ion 

(3) 

Program description and important parameters 

Converged nonlinear solut ion a t  specif ied load increments. 

Results include value of t h e  poten t ia l  FSTAR, t h e  norm of t h e  gradient 

GNOm, t he  value of t he  load PBAR, t h e  displacement set XX and 

the gradient set GG. The f i rs t  NINC+2 components of XX and GG 

are associated w i t h  w-displacements, and the last NINC components 

a re  associated with u-displacements. 



(4) Intermediate data from conjugate gradient search if  

applicable. Includes cycle number, count, together with load, 

displacement and gradient s e t s ,  value of' the  poten t ia l  and norm of 

gradient. 

Addition program output w i l l  occur i f  IPIFl = 1. This 

additional output is  used mainly f o r  code checking and includes the  

following q u a t  it i e s  . 
1. 

2. 

3.  lntermediate data from one-dimensional search 

Linear matrix elements, equations (l24) -(134) 

Nonlinear matrix elements, equations (135) -(140) 

Description of Program 

The program consists of a main ca l l ing  sequence which controls 

the  load incrementing and t e s t s  f o r  convergence. In  addition, the  

following subroutines a re  cal led during the execution of the  

program. 

FUMICO One-dimensional search 

CYCLE Conjugate gradient i t e r a t ion  

ITm I n i t i a l i z e  f o r  Newton-Raphson procedure 

OUTPUT Prints  potent ia l ,  norm of gradient gradient 

and displacement 

a+l XVEC Calculates x 

WOGR 

UOGR air az 
Calculates a U , , , 9 a U  i -1 
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IT0 IGR 

WOMPG 

uo I 

M O V M  

GRAD 

P o r n  

PILOAD 

PIEDGE 

LOADGR 

EDGEGR 

FDH 

FDI 

SD 

AVFI 

HGS 

aii Calculates 
1 

aTi a77 
5’5 Calculates 

ai7 
Calculates 

1 

Change XX from a one-dimensional t o  a three-  

dimensional a r ray  

Calculates gradient components 

Calculates potent id energy 

Calculates load poten t ia l  

Calculates r e s t r a i n t  po ten t ia l  

Calculates gradient of load potent ia l  

Calculates gradient of r e s t r a in t  po ten t ia l  

Calculates first derivative midway between 

s ta t ions  

Calculates first derivative a t  the s ta t ion  

Calculates second derivative 

Calculates the  displacement midway between 

s ta t ions  

Calculates error  vector i n  Newton-Raphson 

procedure 

LMATC Calculates matrix of second derivatives f o r  

Newton -Raphs on procedure 

AM, AP, AE? 
- z AMH, APH Calculate the second derivatives of 
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- 
NMH, NPH Calculate t he  second derivatives of 

B Calculate membrane s t i f f n e s s  

D Calculate bending s t i f f n e s s  

01 

02 

1 Calculate Lu 

Calculate O2 

Program List ing 

The FORTRAN statements,which comprise the  program as b r i e f l y ,  

described are as follows. 
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C O M M O N  
l / B L 4 / X X ( 6 3 3 )  
2 / R L 7 / P ( 6 3 3 )  
3 / F I L 8 / G G  (633 ) 
4/ai< 1 / x  (633 ) 
5 / B K 2 /  1 PLUS 
6 /B lT3/  I P I  F 1 9 N C L  O E L  TA 

C U C L  I S  T H E  NLJFi3XR O F  I T E G A T  
C I P I F l  C O N T R O L S  W d I T T I N G  O F  

O I V E U S I O N  G ( 6 3 3 )  
F O U I V A L E N C E  ( G ( 1  ) , 5 G ( l  
A K = "  e 

F O = F  
FP=F 

Y R = F  
VR=I?. 
PP=o. 
DO 3 1 0  I=l+ N D  
V B = V B + G ( I  ) * P ( I )  

3 1 0  PP=PP+P( I ) * P  ( I  ) 
I F ( V . 3 . G T . 0 . )  I P L U S = 2  
I F ( 1 P L U S - 1 )  4 9 4 1 2 5  

25 W R I T E ( 6 . 3 )  

O N S  THMIOUGH 3 R i )  ORDER 
I N T E R M k i )  I P T E  R E S U L T S  

3 F O R M A T ( l H l r 3 8 H  O N E  D I M E N S I O N A L  S E A R C H  F A I L U R E  R E T U R N / / )  
K'FTtJRN 

4 I F ( E S T . L T . F )  SO TO 315 
, F S T = F / I  e 5  

I F ( F e L T . @ . )  5 S T ' l  .5*F 
3 1 5  A K = E e * ( E S T - F ) / V u  

H = S 0 9 T  (PP ) 

A I< = t i  

3?? Y A = Y R  
V A = v S  
I F (  I P I i 1  .EQ.  1 ) 

I F (  (41<.GTaiS. .AND. ( A I < e L T . H )  ) H=AI< 

1 l!lR I T F  ( 6  9 34 ) H 9 Y A  I V 4  
34 F O R M A T  ( 

l 4 H  H = E 1 6 . 8 /  
24H Y A = E 1 6 . 8 /  
3 4 H  V A = E 1 6 . 8  

DO 1 5  I = l r N D  
1 5  x ( I ) = x x ( I )  
36 0 0 3 3 3  I = l r N D  

33n X X ( I ) = X  ( I ) + H * P ( I )  
C 4 L L  G H 4 D ( F i S N L + 3 ? 3 )  
Y R = F  
v=?=3. 
Dc! 3LLO 1 = 1  q NE 

3 4 C  V B = v R + G  ( I ) *P ( 1 ) 

I F ( I P I F I . E Q . 1 )  
1 WR I TE ( 6 *  33 ) H  * V S  

1 4 H  H = E 1 6 . 8 /  
33 F O R M A T (  

2 4 H  V B = E 1 6 . 8 )  
I F ( V 9 ) 2 8 r 4 3 3 r 3 4 e  

28 I F ( F - Y A )  1 1 1 1 2 r 1 2  
1 1  H=2e*H 

FP=F 

GO T O  3 2 0  
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1? H=H+?.+H 
GO T O  36 

3 4 u  K = G  
16 Z=3.:?*( Y A - Y t i  ) / H + V A + V Y  

Id1 =SCJRT ( Z + X - 2 - V A % V d  ) 

B K = H * ( V B + W I - L  ) / ( V d - V A + E e * ' A f l  ) 

DO 365 I=l. ND 
360 X X ( l ) = X  ( I ) + ( H - L ) K ) + P ( I )  

CALL G R P D ( F . B N L * ~ P H )  
V C = 3 .  
P1 =o. 
G I  =a. 
P O  370  I=l * N D  
V C = V C + G G ( I  ) i t P ( I )  
G l = G I + G G ( I ) * G G ( I )  

37c P 1 = P 1 + P ( I  ) i i P ( I )  
G 1  = S O R T  ( G I  
Pl=SQRT(Pl) 
P H I = A B S ( V C ) / P l / G l  
I F  ( I P I F l  e E Q e  1 ) 

l W R I T E ( 6 9 3 8 5 )  F q Y A r Y c i * V A , V B * i 3 1 < r r i * ~ P . V C r P r i I  
385 F O R M A T ( l H O q 3 H  F = E 1 6 e 8 / 4 H  Y A = E 1 6 * 8 / 4 H  Y B = E 1 5 e 8 / 4 H  V A = E 1 6 e 8 / 4 H  V B = E l  

1 6 . 8 / 4 H  B i < = C 1 6 , 8 / 3 i i  H=E 1 6 . 8 / 4 H  FP=E16.H/ 
24H V C = E 1 6 . 8 / 5 H  P h I = C l 6 . ~ 3 )  

I F ( F . G T . Y A . O R . F . G T . Y 8 )  Gi) T O  29 
K=K+ 1 

I F ( P H I e L E e D E L T A )  GO T O  400 
I F  ( K e G E e N C L )  G O  T O  403 

I F ( F . E O . Y A . A N D . Y A . E Q . Y i j )  S O  T O  400 
GO TC! 68 

29 I F ( K )  1 0 5 ~ 1 0 5 , 4 3 0  
I C 5  I F ( Y 3 - Y A )  37.37360 

6'7 I F ( F - Y A ) 6 8 9 6 8 . 6 7  
68 I F ( V C )  69.69973 
69 Y P = F  

H = B K  
V A = V C  
D O  76  I = l  .ND 

7 6  X (  1 ) = x x (  1 ) 
GO T O  1 6  

70 H=H-;I!< 
Y R = F  
V H = V C  
GO TO 1 6  

67 I F ( V C )  38.38939 
39 H = H - R K  

Y R = F  
V R = V C  
GO T O  1 6  

38 H=H-RI< 
49 H=H/2. 

I F ( H )  46 .46 r47  
I F ( I PLUS-2 ) 46 

72 l P L u s = l  
72 v 72 + 7 3  

b!R I T E  ( 6 9 1 0 3  ) 

RETCJRN 

WR I T E  (6 9 1 0 4  ) 

1 0 3  F O R M A T ( I H O * l O H  S E A R C H  7 2 )  

7.3 IPLus=2 

1 0 4  F O R M A T ( I H @ r I ~ 3 H  S E A R C H  7 3 )  
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RFl (JZN 
47 C A L L  X V E C ( H I ~ * . N D )  

C A L L GR P 0 ( FS T A !=? 3 i3NL 1 BPLi 1 
vc:;. 
DO 4 :  I=I*ND 

41 V C = V C + G G  ( 1 ) * P  ( I ) 

I F ( V C )  42,42943 
42 I F ( F S T A R - Y A )  44,43*4D 
44 DO 45 I=I.ND 
45 x ( I ) = x x ( I )  

Y A = F .5 T A R 
V A = V C  
GO T O  40  

43 Y R = F S T A R  
VR'VC 
GO T O  16 

37 I F ( F - Y A )  13'1.1170q52 
100 I F ( V C )  69t69.70 
5:' C A L L  X V E C ( r l .  1 e q Y D )  

48 x ( I ) = x x ( I )  
DC 4e I = l r N [ ?  

H=-Bl< 
51 H = H / ? .  

I F ( H )  52q52.53 
4? I F  ( I P L U S - 2  1 74 q 74 3 75 
74 I P L I I =  1 

I a I R I T E ( 6 r  1 C 2 )  
1 CP F O R V A T  ( l H O v  1 O H  S E A R C H  .14) 

F?ET(JRN 
75 I P L l J . S = 2  

W R I T E ( 6 ~ 1 C 1 )  
121 F O Q V A T ( 1 H S r l O H  S E A X C H  75) 

RETIJRN 

CP.LL G R A L ? ( F s T A R * H I . l L t F i P 7  1 
vc=c.  
DO 54 I = l  *ND 

5 4  V C = V C + G G ( I  ) + P (  I )  

57 C A L L  X V c C ( H 9 1 e q N C )  

I F ( b C )  62.52~56 
6 2  I F ( F c T 4 R - Y A )  55 r51 .51  
55 V P Z V C  

Y A = F S T A F ?  
H= -H 
DO 57 I=I+ND 

GO T O  16 
57 

56 I F ( F S T A R - Y B )  SS*5lr51 
58 DO 59 1 = 1 * N D  
59 x ( I ) = X x ( I )  

X (  I ) = x x (  I ) 

Y B = F S T A R  
v E 3 = v c  
GO T O  5 1  

4 0 3  I P L V S = O  
R E  T 1.14 N 
E N D  
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$ 1  I F ? t ? ?  I T  I N F  A V  ( E  * RO t D I D=lL ) 

r n w v w  
1 / f n F F / C M A T  ( 1 4  ) 
2/91 1 7 / A N i l . S F * O M ~ G A  

I F (  F a F Q * n e  )R:TlIRN 
E R D = 2 r * E * R O * D  
ncl 2=0FL**2 
DEL 4 = C E L 2 * D E L 2  
AMAT ( 1 = E R D / C F L L * * E + A Y A T  ( 1 ) 

A M A T ( ~ ) = E R D * ( ~ . / C E L ~ + A N U / R O / L I C L * * ~ ) + A M A T ( ~ )  
R E T U R N  
F N n  

A W A T ( Z ) = - E ? D *  ( 2 . / D E L 4 + A N U / ~ O / D E L * * 3  ) + A M a T  ( 2 )  



S U B R O U T I N E  A E  (E  * R O $ 9  9k? r O T  (I O X  +DEL ) 

COYWON 
I / C O E F / A Y A T ( 1 4 )  
~ / Q L I ~ / A N U ~ S F I ~ M E G A  

I F ( E . + E Q e O . ) R E T U W N  
E R D = E * R O * D * Z e  
D E L E = D E L * D E L  
D E L 3 = C E L E * D E L  
D E L 4 = C E L 3 * D E L  
A M A T ( 2 ) = A M A T ( 2 ) t E R D * ( - 2 . / D E L 4 + A N U / R O / D E L 3 )  
A M A T ( 3 ) = A M A T ( 3 ) + E ” R O * ~ * ~ . * ( O X * * 2 + O T * * ~ + 2 * * A N U ~ O X * O T ) + E R ~ * 4 ~ / ~ E L 4  
A M A T  (4 ) = A M A T  ( 4  ) + E R C *  ( - 2 . / D E L 4 - A N U / R O / D E L 3  ) 

A M A T ( 7 ) = A M A T ( 7 ) + E * 3 * 2 . * ( O T + A N U * O X )  
A V A T ( I O ) = A M A T ( I C ) + 2 e * E * i 3 / R O  
A h ’ A T ( 1 3 ) = 4 V A T ( l d ) + 2 . * E * B * ( O T + A N U * O X )  
R F  TCJi7N 
E N D  

S I J B R Q U T I N E  A M H ( E I R O I D ~ B I O T , O X V D E L )  
COMMON 

l / C O E F / A M A T ( 1 4 )  
~ / ~ L I ~ / A N U I S F I O M C G A  

I F ( E e E Q e O e )  R E T U R N  
O X T = O X + A N U * @ T  
F R B = E * R O * B * O X T / D E L  
A M A T ( 2 ) = A M A T ( E ) - E / D E L * + b 2 * D / R 0 * 2 *  
A M A T ( ~ ) ’ A M A T ( ~ ) + ~ O * E / D E L * * ~ * D / R O  
A M A T ( 6 ) = A M A T ( 6 ) - E R B  
A M A T  ( 7  ) = A M A T  ( 7  ) + E R B  
A M A T ( ~ ) = A M A T ( ~ ) - ~ O / D E L * * ~ * E * R O * ~  
A ~ A T ( 1 @ ) = A M A T ( 1 @ ) + t * R O * ~ * ( 2 . / D ~ L ~ ~ * 2 + 2 ~ * A N U / R O / D E L )  
A M A T  ( 12 ) = A M A T  f 12 ) +ERB 
A M A T ( 1 3 ) = A M A T ( 1 3 ) + E R B  
R E T I J H N  
END 

S U B R O U T I N E  A P H ( t r H U r D l a r O T q O X , D E L )  
COMMON 

1 / C O E F / 4 M A T ( 1 4 )  
~ / B L ~ ~ / A N U I ~ F I O M ~ G A  

I F ( E e E Q . O . ) R E T U R N  
O X T = O X + A N U * O T  
E R U = E * R O * E * O X T / O E L  
D E L 2 = C E L * * 2  
E O D = E / D E L E * D / R O  
A M A T  ( 3  )=APnAT ( 3  ) +2i.*EOD 
A M A T ( 4 ) ’ A M A T ( 4 ) - 2 . * E O D  
A M A T  ( 7  ) =AI\”AT ( 7  - E R B  
A M A T ( B ) = A M A T ( R ) + E R S  
AMAT(~~)=AMAT(~O)+E*RO*~*(ZO/DEL~-~~*ANU/~O/DEL) 
A M A T ( l I ) = A M A T ( I l )  - 2 e / D E L 2 * E * R O * B  
A M A T ( 1 3 ) = A M A T ( I J ) - E R E  
A M A T  ( 1 4  ) = A M A T  ( 1 4  ) - E R E  
R E T U R N  
EVD 
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S U S R O U T I N E  NMH(EMH~R~H~BI"IH~OTM.OXM~DEL~I qdNL98Pt)) 

c 0 V r4 ON 
I / N L C O E F / F N M A T ( 9 )  
2 / B L 1 7 / A K U  9 S F  9 O M r G A  
3 / B L Y l / X 5 A R ( 6 3 3 ) / B L 1 6 / N I N C I N F P I  
4 / B L 4 / X X ( 6 3 3 )  

I F ( E M H e E Q . @ . )  R c T U R N  
I F  (BPa.EO*@*.AND.BNL.EQ.O. ) R E T U R N  
IF(EP6.EQ.I.) GO T O  4 
N = 2 * N I N C + 2  
00 5 M Z 1 . N  

5 x R A R ( M ) = x x ( M )  
4 D W k ' = ( X S A R ( I  ) - X E A R ( I - I ) ) / D E L  

W A = ( X l 3 4 R (  I ) + X S A M (  1-1 ) ) * e 5  
K U = N I N C + I + I  
I F ( 1 - 2 )  1 9 1 . 2  

1 C)UH=XBAR ( K U  )/DEL 
U A = . S * X B A R ( K U )  
GO T O  3 

7 D U H = ( X B A R ( K U ) - X U A R ( K U - l  1 ) / D E L  
U A = ( X B A R ( K U ) + X B A R ( K U - I  ) * e 5  

-4 R R  F = RM H * R MH *E V H  + 5 F 
D ? = D F L  **2 
0 1 2 =  ( O X M + A N U * O T P  1 
E N M A T ( I ) = E N M A T ( l ) + a ~ E ~ ( - 3 . * S ~ * ~ W H * * 2 / D 2 - 2 . / 0 2 * ( ~ A * O I 2 + D U H + A N U / R M H  

I * U A )  1 

1 +AN!I /KMH*UA ) )+ENIVIA I ( 2  ) 
E N ~ A T ( 2 ) = ~ R E * ( 3 . * S F ~ 0 ~ ~ H * * 2 / D E L ~ 2 ~ + Z ~ / D 2 * ~ W A * O l Z + D U H  

A = 2  e * C W H / D E L * U R E  
T = ( - l r / D E L + A N U / E . / R V H )  
C = ( I . / D E L + A N U / 2 . / R M H )  
E N M A T  ( 4  ) = E N M A T  ( 4  ) + A * T  
E N M A T ( 5 ) = E N M A T ( 5 ) + A * C  
F N M A T  ( 7  ) = E N M A T  ( 7  ) - A * C  
E N M A T ( e ) = E N M A T ( a ) + A * C  
R E T U R N  
E N D  

S U B R O U T I N E  N P H ( ~ P H ~ R P H ~ E ~ P H ~ O T P T O X P . D E L ~ K ~ ~ N L I B P ~ )  
COMMON 

1 / N L C O E F / E N M A T ( 9 )  
2/BL 1 7 / A N U  t SF O M t G A  
3 / B L l G / N I N C $ N F P l  
L./RLI< 1 / X B A R  (633 
5 / E L 4 / X X ( 6 3 3 )  

I F  ( E D H .  EQ -9 e ) R E T U 2 N  
IF(E3NL.EQ.O..AND.BPB.EQ.O.) R E T U R N  
I F ( P P d . E Q . 1 . )  GO T O  4 
N = 2 + N I N C + 2  

5 X R A R ( M ) = x x ( M )  
DO 5 M z 1 . N  

4 DWH= ( X B A R  ( K  ) - X E A R  (K-  1 1 ) / D E L  
W A = ( X B A R ( K ) + Xi3 k R ( K- 1 ) 1 * e 5 
K!J=N I N C +  1 +I< 

I F  ( K - 2 )  1 1 . 2  
1 D I I H = X B A R  ( K U  ) / D E L  

U A = e S * X B A R ( K U )  
GO T O  3 

? D U H = ( X B A R ( K U ) - X j A ~ ( l < U - I ) ) / D E L  
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